
Exware Solutions Inc.

ExSite 4 Content Model

Introduction 1

Content Structure 1

Content Paths	 2

Dynamic URLs	 3

Static vs. Dynamic Content	 3

Permalinks and Canonical URLs	 3

Revisions 4

Views 4

Workflow 5

Save as draft	 5

Content Object Types 5

Metadata 7

Generic Metadata	 7

Explicit and Implicit Metadata	 7

Flags	 8

Tags and Indexes 8

Translations 9

Building a Web Page 9

Formatted Views 10

Example Format	 11

Content Date Services 11

Tasks	 12

To-do Lists	 12

Exware Solutions Inc. 102-131 Water Street, Vancouver, BC V6B 4M3 T 604.684.9440 F 604.684.5894 morgan@exware.com www.exware.com

Exware Solutions Inc.

Logbook	 12

Price Services 12

GETs and POSTs 13

Search 14

Configuration Settings 15

Metadata	 15

Contextual Metadata	 15

Formats	 15

Settings	 16

Behaviour Inheritance 17

Class Inheritance	 17

Model (content behaviour)	 17

View (content appearance)	 18

Controller (content management)	 18

Ancestor Inheritance	 19

Converting v3 Websites 19

Plug-in Module Notes 21

Content	21

Content Management	 21

E-Zines	21

My Website	 21

Photo Albums	 21

Keyword Tags	 21

Forms	 21

Product Catalogs	 21

Registration	 21

Address Book	 22

Memberships	 22

Security Manager	 22

To-Do	 22

Users	 22

Financial Reports	 22

Name of report	 "2

Exware Solutions Inc.

ExSite::Content API - CMS Base Class 23

Content Identification	 23

Setup	 24

Converting Content Type	 24

Basic Object Queries	 24

Content Dates	 26

Metadata	 26

Flags	 27

Content Paths	 28

Displaying the Content	 28

Getting HTML	 28

Getting URLs	 30

Sub-content	 31

Indexes	31

tools()	 32

Finding Content	 32

Content Expansion	 32

get_dynamic_content()	 33

get_dynamic_content_indirect()	 33

Revision Control	 34

revise(%opt)	 34

Publishing	 35

publish_content(%opt)	 35

publish_self(%opt)	 35

publish_parent(%opt)	 35

publish_children(%opt)	 35

Workflows	 35

ExSite::Revision 36

Name of report	 "3

Exware Solutions Inc.

Setup	 36

Revision Management	 37

Views	 37

ExSite::View 38

Disk Files	 39

MIME-type	 40

Images	 40

Retrieving/Displaying Data	 41

Name of report	 "4

Exware Solutions Inc.

Introduction
ExSite is built in layers:

ExSite v4 is primarily an overhaul of layer 2, the CMS. This document covers the changes in the CMS layer. For other v4
changes in other layers, see the ExSite 4 Developers Guide.

Some of the disadvantages of v3 content model that we are trying to address with v4 are:

• core content management (for example, translations, revision control, etc.) was limited to normal pages, and not
available to other similar content types like articles, products, or events. This often meant that features had to be
reinvented when needed for other content types (eg. translations in forms).

• certain types of DB queries were slow due to the data types used in the revision table

• over-reliance on dynamic content views for anything that was not core content (=slow)

The v4 "content" object is a much more abstracted object that can serve as a section, page, or content object, plus
various other types of object (such as articles, products, events, and so on). Any content that can fit this model can make
use of the core content management features such as publishing/static delivery, indexing, menuing, translations, revision
control, templating, metadata, security, access controls, and workflows.

Content Structure

Note that the home page of a section is the section itself, not a special page named “index.html”.

Content objects are related to each other in 3 ways:

4 Plug-in Modules (optional components with their own custom interfaces)

3 Plug-in Frameworks (optional shared data models, like Finance)

2 CMS (general-purpose tools for displaying web content)

1 Kernel (general-purpose tools for managing data & security, as well as the back-end admin system)

v3 v4
section > page > content > content_data content > revision > view
section.parent_id, page.parent_id, content.page_id content.parent
content_data.content_id revision.content_id
page.template_id content.template
page.parent_id (for alternate pages) content.master
section.template_id n/a
page filename=index.html section

ExSite v4 Content Model	 "1

Exware Solutions Inc.

1. Parent-child relationship (content.parent): This is the navigational structure of the content. Content objects are
organized into a single tree/hierarchy, so that every content object has a single parent, 0 or more children, and a
simple path that addresses the content.

2. Template (content.template): The template is a content object that is used for displaying the content and resolving
relative content references, as in v3.

3. Original content reference (content.master): This is the original content that this content object refers to. This is used
for translations (for example, the French version can point back to the original English version). In v3, the translation
relationship was an overloading of the parent-child relationship for pages of “alternate” type. In v4, the translation
relationship is a separate and distinct relationship. Original content is also used in the case of aliases, where one
content object duplicates another, but they only have to be edited in one place.

Content Paths

Each content object has a path, defined by its parent-child relationships. The path is used for addressing the content in
dynamic queries, as well as for publishing the content to disk.

Each type publishes either as a directory or as a file. If as a directory, then the content can be viewed at its path:

	 http://foo.com/path/to/content

This is equivalent to:

	 http://foo.com/path/to/content/index.html

but the “/index.html” is optional, and usually left off to simplify the URL.

If the content is published as a file, then it can be viewed as a filename at the path of its parent:

	 http://foo.com/path/to/content/filename.html

Since each content type has control over its own publishing, these default rules can be bent. For example, calendars can
publish their events to special dated subdirectories, for example:

	 http://foo.com/calendar/2012/09/event-X.html

In this example, the calendar publishes to the directory /calendar/ and the individual events publish to files, eg. event-
X.html. But the calendar first creates dated subdirectories to hold these events.

v3 v4
foo.com/contact.html foo.com/contact
foo.com/directions.html foo.com/contact/directions
foo.com/cgi/page.cgi/directions.html foo.com/cgi/ex.cgi/page/contact/directions
foo.com/map.jpg foo.com/contact/directions/map.jpg
foo.com/cgi/content.cgi/map.jpg?id=1234 foo.com/cgi/ex.cgi/view/contact/directions/map
foo.com/_Library/images/picture.jpg foo.com/images/picture.jpg
foo.com/_Template/base/stylessheet.css foo.com/base/stylessheet.css

ExSite v4 Content Model	 "2

Exware Solutions Inc.

If a content item is restricted access or dynamic, then the published version still exists, but consists of a redirect to the
dynamic version. So the static URL always works for GET requests.

Dynamic URLs
The dynamic URL to a page at path /foo/bar is

	 http://foo.com/cgi/ex.cgi/page/foo/bar

The dynamic URL to content at path /foo/photo is

	 http://foo.com/cgi/ex.cgi/view/foo/photo

This will display the “bare” content directly. To display the content formatted (in the style of a page), simply change this to
the page-style URL:

	 http://foo.com/cgi/ex.cgi/page/foo/photo

This does not actually make it a page; it merely formats it as a page, with HTML wrappers, menus, etc. surrounding the
content.

Note that any content object can define its own custom URL. This can be a remote URL (eg. you can create a “page” in
your menus that actually links to a remote website), or it can be a local URL (which needs to either make sense to the
webserver, or needs to be configured separately using some kind of server alias).

Static vs. Dynamic Content
You do not have to specify whether content should be static or dynamic. ExSite 4 content objects can intelligently make
their own decisions about their presentation mode, by using their own internal logic to respond to the publish_rule()
method (which can return static, dynamic, hourly, daily, or weekly). You can still manually set a publish rule for a particular
piece of content, but that overrides the logic of the content class.

Examples: Member-only content defaults to dynamic, since it depends on the access level of the person viewing it.
Calendars default to publish daily, since that is when the upcoming events listings may change. Events accepting
registration default to dynamic before the event, so that fee deadlines and sellouts are displayed accurately, and static
after the event is done.

Note that HTML content may include plugins; in that case, those plugins are queried using $module->ioctl("PublishRule")
to find out if the plugin recommends a particular publish rule. For example, menu plugins can reply with "static" since
menus are always the same on a particular page. Pages without a manually set publish rule will use the most dynamic
publish rule requested by the plugins contained in that page.

Permalinks and Canonical URLs
The permalink to a content object is the “best” user-friendly URL to the content. This can be a relative, static URL, even if
the content is ultimately delivered dynamically. Permalinks should generally be used for URLs that are targeted at people,
such as internal hyperlinks and published URLs.

Permalink Example: /sale

The Canonical URL to a content object is the most direct absolute URL to the content. If the content is ultimately
dynamic, the canonical URL must also be dynamic. Canonical URLs should be used for search engines, so they access
the content directly.

ExSite v4 Content Model	 "3

Exware Solutions Inc.

Canonical URL Example: http://foo.com/cgi/ex.cgi/page/sale

Canonical URLs are determined automatically. However ExSite 4 also supports a manual override: allow a content type
to define metadata under the name "canonical", and that will be used instead. This might be useful if referring to off-site
URLs.

Revisions

Each content object can have multiple revisions. In v3, there were two special revisions, newest and active. In v4 there is
the additional concept of a draft revision:

1. the draft revision is the most recently added revision

2. the newest revision is the most recently added revision that is approved for public viewing

3. the current revision is the most recently published revision

When saving a new revision, they will automatically be saved as a “newest” revision, unless you “save as draft”.

In ExSite 4, no actual content is stored in the revision record. The revision record contains only the creation and
publication timestamps, original mime-type, and comment. The content itself is stored in the views.

Views

Each revision can have multiple views. A view is simply a viewable representation of the content. ExSite 3 supported only
a single view of the content, with an exception for images, which could also have thumbnails. In ExSite 4 any MIME-type
can have multiple views, and five views are supported:

normal: this is the default view that would normally be inserted into web pages,

large: a larger or more high-res view than the default; for example, an HD video, or high-res photo.

small: a smaller version than the default; for example, a low-res view for previews or index listings

thumbnail: a very small version, suitable for thumbnail galleries

icon: an ultra-small version, suitable for inlining into text

When content is installed, a normal view is created by default. Any of the other views can also be created. The views do
not have to be the same mime-type as the original content. For example, a video could have an image as its small view
(and also as its thumbnail and icon, for that matter).

When inserting views into pages, the normal view is used by default, but you can select other views optionally. If the
requested view is not available, it will automatically find the closest matching view. For example, if you ask for a thumbnail

v3 v4
content_data revision

v3 v4
content_data.data (or fdata) view/normal
content_data.thumb view/thumbnail

ExSite v4 Content Model	 "4

Exware Solutions Inc.

image, but there is only a small image, the system will simply resize the small image to the standard thumbnail
dimensions.

Workflow

Workflow status determines how the content is handled and displayed to visitors. The states are numbered numerically,
with lower values being "more live" and higher numbers being "more dead":

0. published - the content is live and fully interactive

1. archived - the content is publicly viewable, but will be ignored in menus and indexes and is not interactive

2. queued - the content is approved to be taken live automatically by the publishing queue

3. approved - the content is approved to be published manually

4. submitted - the content has been submitted for the approval of a moderator

5. draft - the content is not ready to go live

6. expired - the content is no longer approved for viewing, but reinstatement is likely

7. canceled - the content is longer longer approved for viewing, and reinstatement is unlikely

8. rejected - the content is junk, and can be deleted by garbage collectors

Save as draft
New content can be set to "draft" to indicate that work is in progress, and the content should not be published. If the
content already exists and is published, but a new revision should not be published, then the revision status can also be
set to draft. The content will publish, but the draft revisions will be ignored. The other workflow states have no meaning in
revision management.

Content Object Types

v3 v4
active published
disabled canceled
archived archived

approved, queued, submitted, draft, expired, rejected

v3 v4
native section content/section with no url
standalone section content/section with an url defined
page content/page
template content/template
library content/library
alternate content/page with a language and master defined
content content/content
blog content/blog
article content/article

ExSite v4 Content Model	 "5

Exware Solutions Inc.

Every content object has a type, which provides the properties of the content. Every type includes a Perl class to manage
the type; all of these classes ultimately inherit from the base Content class. However, you can override and customize
any of the core behaviours.

Among the recognized types are: section, page, library, template, content, blog, article, calendar, event, catalog, product,
comment. These replace the similar objects in ExSite 3, and have comparable behaviours.

Types are extensible using the following procedure:

1. add a new type to the content_type table, defining some of the basic rules:

1.1. Class: the perl module that overloads Content.pm in managing content of this type (model/view)

1.2. Plugin: the perl module that provides a specialized UI for managing content of this type (controller)

1.3. Role: the default role of content of this type. This defines where the content comes from, and who is
allowed to manage it. Editorial content is the regular website content; design is the templates and styles
of the website; user is content that is contributed by website visitors.

1.4. Publish As: file (eg. /foo.html), directory (eg. /foo/), or never (do not publish this content type). If publishing
as a directory, the content may nevertheless be written to a file, index.html.

1.5. Publish Method: static, dynamic, hourly, daily, weekly, or never. This is used as a default publish_rule if
the content does not otherwise specify a rule.

1.6. Publish Descendants: when publishing this content, select which sub-content items should also be
published at the same time

1.7. Navigation Type: page (treat these content objects as primary navigation destinations, like pages in the site
map), item (treat these as secondary navigation destinations, like items in a list), none (this content is not a
navigation destination)

1.8. Display Type: raw (the content should be displayed in its bare form), formatted (the content should be built
using a format, and inserted into a template), template (the content defines a complete HTML document,
with CMS tags/codes for inserting other content), none (the content is not displayed)

2. define the allowed relations with other types in the content_rel table

3. install a Perl module that controls the behaviours of the new type; it can inherit from the closest existing type

comment content/comment
attachment content/content
catalog_category content/catalog
catalog_product content/product
event, evt content/calendar, content/event

v3 v4

ExSite v4 Content Model	 "6

Exware Solutions Inc.

Metadata

Content objects have their own attributes class called Metadata, which can track arbitrary metadata for every content
object. Each content type can define the metadata properties that are relevant to that type, using configuration settings
like:

	 content.metadata.article.author.datatype = string

Replace article with the content type, author with the property name, and datatype with any other dbmap parameter you
want to set on the metadata property. Standard metadata properties are set up in $config{content}{metadata}, so you
only need to define exceptions to those.

There are some metadata functions, which will return useful values even if the metadata has not been explicitly defined.
These include: title(), author(), description(), and imeta() (see below).

The method editmeta() (and do_editmeta) automatically includes all type-specific metadata (and flags, below) when
making and processing a form to edit a content object.

You can manually insert metadata values into your markup using <!--$meta_property_name-->, for example:

	 <meta name="author" content="<!--$author-->">

or

	 <p>Written by <!--$author--></p>

You can also auto-include metadata using simply, <!--$metadata-->. This will include <meta> tags for any metadata that
you have set to be shown using a setting like this:

	 content.metadata.article.author.show =1

Auto-included meta tags will be shown if they have either an explicit or implicit value.

Generic Metadata
Generic metadata applies to all content types. We support three generic metadata schemes:

• Dublin Core

• OpenGraph (Facebook)

• Twitter Cards

Explicit and Implicit Metadata
Metadata can explicitly set on a piece of content, or it can be implicitly inferred from other content settings.

v3 v4

page.title content.title
page.description metadata/description
page.keywords metadata/keywords
article.author metadata/author

ExSite v4 Content Model	 "7

Exware Solutions Inc.

There is some overlap between the properties of the generic metadata schemes, and with ExSite metadata. For
example, all of them include a variation on description (including DC.Description, og:description, and twitter:description).
If one of these has been defined, but you request an undefined one, imeta() will pick a defined value and give that to you
instead of undef.

Many of the generic metadata properties map roughly to properties that ExSite tracks in the CMS. These include things
like authors, publication dates, images, URLs, MIME-types, dimensions, and others. If you request a generic metadata
property that has not been explicitly set, but which has an implicit value, the implicit metadata function imeta() will return
the implicit value.

The Modules::Content::metadata() method provides an interface to metadata management, which shows the implicit
value as input placeholders if there is no explicit value defined.

If you set a metadata property to be shown automatically, the implicit value will be used if no explicit one is defined. That
makes it easy to include standard meta tags such as twitter cards and have them auto-populate with no special effort.

Flags
Flags are boolean metadata. They can simply be checked off to activate them. Allowed flags are defined in
$config{content}{flags}.

To test a flag setting, use:

	 if ($c->flag($flag_name)) {

To fetch all flag settings, use:

	 my %flag = $c->flags();

To set and remove flags, use:

	 $c->set_flag($name);
	 $c->unset_flag($name);

Tags and Indexes

You can setup multiple indexes under a site, each with its own dictionary of keywords. The indexes publish to directories,
and the keywords to files, so you end up with URLs like:

	 http://foo.com/tags/cats.html

The individual tags are content objects of type alias, placed under the appropriate keyword.

Alias content objects simply redirect to the content ID defined in the master column. Alias content objects can be used
elsewhere; they are not just for tagging.

v3 v4
keyword content/index, content/keyword
keyword_tag content/alias

ExSite v4 Content Model	 "8

Exware Solutions Inc.

Translations

Any content object can be setup in translated forms, simply by selecting the language and setting the master to point
back to the original content.

When done with page objects, this allows for the sort of page mirroring we normally do. The sitemap in other languages
will be based off the default/English sitemap, no matter how the alternate versions are structured.

The mirrored home page should be placed into a special page named for the language (or its abbreviation), so that the
English page

	 http://foo.com/

becomes

	 http://foo.com/Fr

Building a Web Page

There is no longer a “page” content object that provides the skeleton HTML for the page. Instead, we use the current
revision of the page itself. If the page has no revisions, we take the current revision of its template instead.

When we expand the HTML skeleton; we support all of the ExSite 3 CMS tags. However, the rules for finding matching
content are a bit different. We search the following locations, in order (underlined rules are different from v3):

1. search the children of the current node
2. search the children of the current page
3. search the children of our templates and their parent(s)
4. search the children of the current page’s templates and their parent(s)
5. search all of our descendant nodes
6. seach the children of our section’s template(s)
7. search the libraries of this section and its parent sections

The content expansion is done by ExSite::Content::expand(), which works the same as v3’s expand(), with the following
minor changes:

• The meta tags <!--$page_header--> and <!--$page_footer--> will be replaced with the contents of
$share{page_header} and $share{page_footer}. The intention is that these tags should be placed in the <head>
section and after the </body> in the template. Things like scripts and stylesheets can be placed there for better
document structuring. Best to append to these variables, so you don’t wipe out anything already placed there by other
objects/modules.

v3 v4

version langauge

v3 v4
find “page” content object use latest revision of this page, or its template

ExSite v4 Content Model	 "9

Exware Solutions Inc.

• In v3, expand() included MySite code to allow for inline editing. This is gone in v4 - MySite handles its own page
generation.

• The page URL substitution {{page}} will also accept non-page objects, but will format them like a page. (see below)

Note that any content can be formatted to be displayed like a page. To do this manually:

	 http://foo.com/cgi/ex.cgi/page/path/to/content

This will format “content” in a full template, as if it were a page.

To do this programattically, use:

	 $out = $my_content->show_templated();

To write out a file that has your content formatted like a page, use:

	 my $file = new ExSite::Diskfile(base=>$base_path, path=>$web_path,
	 	 	 	 filename=>$fname, contents=>$this->show_templated());
	 $file->publish();

where $base_path is your DOCROOT, $web_path is the path in the URL, $filename is the HTML filename (eg.
something.html), and contents is the complete HTML for the document.

Formatted Views
In addition to the standard views, you can define your own views using templates with merge codes. The following styles
of merge code are supported:

The recognized merge codes are:

style description
[[foo]] insert foo here
[[?foo]]TEXT[[/?foo]] include TEXT if foo is defined
[[!foo]]TEXT[[/!foo]] include TEXT if foo is not defined

code description
title, label, name, language taken from the content record
id, about, author, caption, description, icon, index, info,
navpath, summary, tools, height, width

obtained by calling the given method

type the content type, eg. “page”, “article”
date the posting date
curl the canonical URL to the content
url the URL to the content
html the HTML to display the content
meta_X, eg. meta_author metadata ‘X’
url_VIEW, eg. url_thumbnail the URL to a particular VIEW (eg. thumbnail)
html_VIEW, eg. html_thumbnail the HTML for a particular VIEW (eg. thumbnail)

ExSite v4 Content Model	 "10

Exware Solutions Inc.

You can create your own formats and place them in exsite.conf: content.format.NAME = ... or you can simply create
them on the fly. Use this call to obtain specially-formatted content:

	 $out = $my_content->show_formatted($format,%data)

where $format is either the name of a preconfigured format, or a complete template, and %data is any merge code
values you want to override.

ExSite will automatically look for and use formats that follow certain naming conventions:

	 TYPE_summary
	 CONTAINER_TYPE_summary

where TYPE is the content type (eg. "product") and CONTAINER is the optional parent type (eg. "catalog"). These sum-
mary formats will be used in indexes and listings.

Example Format
This format is used to display articles:

<div class=‘articlePath’>[[navpath]]</div>
<div class=‘article’>

<h1 id=‘article[[id]]’ class=‘articleTitle’>[[title]]</h1>
<div class=‘articleAbout’>[[info]]</div>
[[_IMG:html]]
<div class=‘articleBody’>[[html]]</div>
[[tools]]

</div>

Content Date Services

index_TYPE, eg. index_contact an index (summarized listing) of just the named subtype
contents_TYPE, eg. contents_contact a full listing of just the named subtype
CONTENT:..., eg. logo:url_thumbnail any of the above parameters for CONTENT
_FIRST:..., eg. _FIRST:title any of the above parameters for the first subcontent

item

_LAST:..., eg. _LAST:title any of the above parameters for the last subcontent
item

_IMG:..., eg. _IMG:html any of the above parameters for the first image of the
subcontent items

code description

v3 v4
crontask, evt_date content_date

ExSite v4 Content Model	 "11

Exware Solutions Inc.

Dates can be assigned to content objects. This can be used for a variety of purposes, including setting up scheduled
tasks, placing things onto a calendar, or simply logging notes on the content. Dates can be date ranges, with a start and
end. Dates have the following attributes:

• type: task, todo, calendar, log, other
• description: a text description or action
• start, end: datetime values (start is required, end is not)
• status: active dates will be selected by the system; inactive dates will be ignored; completed dates are tasks or todo

items that have been marked as done

Tasks
Tasks are automatically scheduled actions that the system can take. To setup a task, add a content_date record with
type “task”, and the start date/time set to when you want the task to execute. The description should be a task action
that is recognized by that content type. By default, the following actions are known:

• publish
• unpublish
• archive

Other content types can define their own actions to extend the set of permitted tasks. The cron.pl script handles the
scheduling; it runs hourly, so task execution times only have a granularity of 1 hour by default.

“Active” tasks will execute once; after execution completes, the system sets the end date of the task to the execution
time, and changes the task status to “completed”. Tasks can also be set to “hourly”, “daily”, or “weekly”, in which case
they will run periodically after the start date and before the end date.

To-do Lists
Tasks allow the system to perform certain preset automatic jobs for you. In cases where the job is too complicated to
automate, you can use to-do lists to setup reminders and checklists for yourself to do them manually. To setup a to-do,
add a content_date record with type “todo”, and the start date/time set to your desired reminder date. The description
should be a message to yourself indicating the work that needs to be done. To-do items can be viewed using the ToDo
plugin application, which also allows you to strike items off your to-do list.

You can quickly add items to a to-do list with the call:

	 $c->todo($description,$date);

Logbook
To log notes on a content object, set the type to “log”, and the description to the log message, or use the call:

	 $c->log($message);

The system will automatically log workflow if you set $config{log_workflow} = 1 in your configuration settings.

Price Services
Prices can be assigned to content objects. This can be used in place of various subsystems in v3 that tracked prices for
different things.

Prices are tracked in the price table, and have the following access controls:

ExSite v4 Content Model	 "12

Exware Solutions Inc.

• Access - the minimum necessary access level to get this price (use this for member pricing)

• Valid from, Valid to - the date range that this price is valid for. Can be left unbounded on either or both sides. Use this
for short-term sales, early bird fees, late fees, and so on.

Any number of prices can be attached to an object. The user will get the lowest active price that they are eligible for.

The base class will manage your prices for you, but it does not handle the shopping experience itself. Your class must
deal with the formatting, add-to-cart functions, and redirection to the shopping cart to check out. This is done the same
way it was in v3. In the simple case, just output a Pay oyster, eg.

	 <!--&Pay(cart=view)-->

GETs and POSTs
GET requests are managed through regular links. To get a dynamic link to a content object with optional query string
parameters set, use:

	 my $url = $c->link(%query_params);

The content object's show() method can check for these query string parameters when deciding what to show. For
example, blogs by default show an index of current posts, but this will return a dynamic link to the archives:

	 $blog->link(archive=>1);

In v3 POSTs were all handled by plug-in modules. In v4, content classes can optionally accept posts directly, with no
special plugin. Post methods should process normal interactions with the content from the website front-end, for
example:

• comments made to articles, or replies made to comments

• submissions made to web forms

• registrations

• product orders

These posts can therefore be handled without any plug-in modules. Administrator interactions, such as content
configuration, should not be run through the post() method. Deal with those in the conventional way in the module's
control panel.

Post data is processed by the object's post() method. You can post direct to the post() method using:

	 http://website.ca/cgi/ex.cgi/post/path/to/content

but that is mostly useful for background and AJAX posts, since it is not in a page context, and will not do well at
generating contextual links and content expansion. If you want to do a regular form post that returns a full page, then
your show method should handle the post, using a method like

	 if ($c->allow_post()) {
	 	 $out .= $c->post();

ExSite v4 Content Model	 "13

http://website.ca/cgi/ex.cgi/post/path/to/content

Exware Solutions Inc.

The allow_post() method in turn should perform all necessary checks that the post is permissible. It is important that it
check that the URL is targeting your content object directly:

	 return 0 if (! $c->url_is_me); # do not allow posts to us at other URLs

That is because content can sometimes be embedded elsewhere (such as a sidebar preview on a different page), and
we only want this content responding to posts at its "home" url.

Search
Search indexes work on similar principles to v3, but with some enhancements. Indexed URLs are stored in the searchurl
table, and relevant terms in the searchterm table, as before. To get a list of links, sorted by relevance, do this:

	 my $search = new ExSite::Search($section_id);
	 $out = $search->do_search($search_string);

Results are automatically filtered for the access level of the user.

Searchurls can be tagged with a "type", which is a simple way to classify URLs. By default the type is set to the content
type of the content indexed at that URL (for example, "event" or "product"), or the plug-in Module if the URL originates
from a plug-in. For example, to search products only, you can append the type to the parameter list:

	 $out = $search->do_search($search_string, "product");

Searchurls can be tagged with a content ID, indicating the object that best represents this content from a search results
point of view. (For example, a content object like a body is generally not viewed directly, so searchterms found in the
body should be associated with the container page.) This allows the CMS admin tools to use the search index to find
content objects:

	 my @content = $search->find_content($search_string);

It returns an array of content objects, most relevant first, which each have a "search_score" attribute to indicate
relevance. (As above, an optional $type can also be appended to the parameter list if you want to limit your searches that
way.) This allows admin control panels to make use of the system search index for their own purposes. For instance, a
Catalog plugin could implement an admin search tool to find products, or a Membership plugin could search for member
profiles.

Not every URL in the search index is necessarily tagged with a content ID, so public searches and admin searches will
not necessarily return the same results.

Content classes can support two methods to customize their search indexes:

	 $c->can_index();

returns true/false depending on whether the content should add terms to the index or not. False values can distinguish
between 0 (meaning permission denied) and undef (meaning the content should not be indexed). True values can
distinguish between -1 (meaning the content can be indexed, but the index appears to be up to date) and 1 (meaning the
content should be indexed now).

	 $c->search_index($search); # $search is an ExSite::Search object

ExSite v4 Content Model	 "14

Exware Solutions Inc.

this method actually creates the search index entries.

Configuration Settings
Content configurations are generally kept under $config{content}{...}. Commonly used settings are outlined below.

Some content types are optional, and only included in the system if you install certain plug-in modules. It may be more
convenient to keep the content configurations in those plug-in module conf files, rather than in the system conf file. In this
case, use the back configuration param "-" to place the conf settings in the configuration root, rather than in the module
configurations. For example:

	 -.content....

Metadata
Metadata are setup using settings like:

	 content.metadata.TYPE.META.MAPATTR = value

where:
TYPE = content type
META = metadata property
MAPATTR = dbmap attribute
For example, to collect an "Author" metadata property on articles, you can set:

	 content.metadata.article.author.datatype = string

Flags can be defined similarly, but do not require dbmap settings, so you just need to add them to a list:

	 content.flags.article += sticky

Contextual Metadata
If you enable contextual metadata, using

	 content.contextual_metadata = 1

then we will also try to setup metadata contextually, meaning that the allowed metadata properties will depend on the
parent container object. That lets you do something like:

	 content.metadata.CONTAINER_ID.TYPE.META.MAPATTR = value
for example:
	 content.metadata.1234.profile.degree.datatype = string

which defines a degree metadata property that applies to profile objects under content (membership type) 1234 only.

Formats
Content formats are taken from the following configuration settings:

	 content.format.TYPE = html_format...

where "TYPE" is a content type like article or product. This is used to display the main view of the content.

	 content.format.TYPE_summary = ...

ExSite v4 Content Model	 "15

Exware Solutions Inc.

for example, article_summary. This format is used to display the content in indexes, for example when viewing the blog.

	 content.format.CONTAINER_TYPE_summary = ...

for example, blog_article_summary. This format is used to display blog articles in indexes, in case you want a different
format than articles that are used elsewhere.

Note that if no special format is defined, the system will use content.format.content as the generic format.

Settings
Settings are configuration parameters that have a flexible scope. They can be set:

• on every content object

• on every object of a certain type (every article, for example)

• on a specific content object (eg. one particular article)

• on all content objects of a certain type within one section (eg. every article within one sub-site)

• on all content objects of a certain type within a certain container (eg. every article within a certain blog)

Settings can be set in configuration files, or in preferences. The general format is:

	 setting.TYPE.NAME = value

where TYPE is a content type (such as "blog") and "name" is the actual conf setting name (such as "index_min").

To make a setting applicable to ALL content types, just use

	 setting.NAME = value

To make a setting applicable to a specific content object, change TYPE to TYPE:ID or TYPE:NAME, where ID is the
content ID or NAME is the content name. For example, to set the index_min setting on a particular blog, use:

	 setting.blog:100.index_min = 1
or
	 setting.blog:News.index_min = 1 # might be ambiguous

To make a setting applicable to all content objects within a certain container, place the setting into a preference that is
attached to the container object. Use the generic setting name, eg. setting.TYPE.NAME, and attach it to the container
object. For example, to moderate all comments in a particular forum, use the setting

	 setting.comment.moderate = 1

and place this as a preference on the forum in question.

To make the setting applicable to all content objects of a type within a certain section, place the setting into a preference
that is attached to the section.

To fetch the setting that is most applicable to a content object, use:

	 my $value = $c->setting($name);

ExSite v4 Content Model	 "16

Exware Solutions Inc.

or, for a more specific example:

	 my $index_min = $blog->setting("index_min");

It will select the most specific setting that has been defined using the above methods.

Behaviour Inheritance
In v4 there are multiple mechanisms for inheriting behaviours from related objects and classes.

Class Inheritance

Model (content behaviour)
Content classes should inherit from the base class, ExSite::Content, to get all standard v4 content model behaviours.
You can alternatively inherit from higher-level classes; for instance If the new class is page-like, it can optionally inherit
from the Page class instead.

The base behaviour is fairly flexible, and is controlled by a few parameters in the content_type table:

• Publish As (publish_as) - how the content publishes itself

• file (eg. foo.html)

• directory (eg. foo/)

• never if the content does not publish

• Publish Method (publish) - the default publish rule for this type of content

• static - content publishes to a static file

• dynamic - content is always rendered at the time of page view

• hourly, daily, weekly - static, but republished on intervals

• Navigation Type (navtype) - how the content is linked in site navigation

• page (object shows in menus)

• item (object shows in indexes/listings)

• none (object cannot be navigated to)

• Display Type (displaytype) - what the object looks like when viewed directly

• raw (object is displayed directly)

• formatted (object is built using a format with merge codes)

• template (object is used as a complete HTML document template)

• none (object is not displayed)

These behaviours can be configured without even needing a special model class, in principle.

The model is extensible using metadata and flags, which can be defined in your configuration files, using settings like:

	 content.metadata.TYPE.METANAME.datatype = string
	 content.metadata.TYPE.METANAME.help = some tooltip text
	 content.flags.TYPE += flag_name

ExSite v4 Content Model	 "17

Exware Solutions Inc.

View (content appearance)
The public view of the content is generated by the class' show() method. Overload this if you need specialized views.

If necessary, you can define alternative admin views using a preview() method.

Most views can be auto-generated using formats, which are template-like snippets of HTML with merge codes. Set the
display type to formatted, and define a format with the content type name in the configurations under content.format...
For example, content.format.article will automatically be used to format article views, if defined. Summary views (eg. for
indexes) will automatically be formatted in a similar way if a format like article_summary is found (replace article with the
appropriate content type).

Formats can include other formats to share/inherit common formats or layouts. The following merge codes will pull in
other formats:

	 [[.foo]] - find and insert $config{content}{format}{foo}
	 [[>foo]] - find and insert a format named "foo" using ExSite::Content::find (will find foo in a template or library)
	 [[>>foo]] - find and insert a format named "foo" using ExSite::Content::find_in_path (will inherit foo from a parent)

Controller (content management)
The Modules::Content plugin provides a useful base class for content management controllers and plug-ins. Use it
instead of Modules::BaseDCD for plugins that manage content classes.

Modules::Content classes have a few standard query parameters that are assumed.

• id - the ID of a content object

• cmd - the control panel function being invoked. The following commands/functions are predefined: conf, edit, rollback,
todo, img, price, contact, translate, publish, unpublish, copy, del.

Modules::Content provides the following methods for superclasses that inherit it:

• write($id) - outputs content object $id. This provides a simple method for embedding or aliasing content in other parts
of the site. Note that you do not normally need a special write() method for content, since the content’s show() method
should automatically generate its own view. Plugin write() methods are used for irregular or aggregated views that are
not normally generated by the object itself. For example, a blog automatically generates its own index and other views,
but if you have several blogs on a system, you might need an aggregated view such as “recent articles” across all
blogs. Similarly, you don’t normally need service pages for content, since every content object has its own natural URL.

• pathbar($c,%opt) - output a PathBar widget to show where you are in admin control panels. $c is the object you are
working on. $opt{section_id} suppresses the inclusion of ancestral objects above the specified section number.
$opt{linktypes} provides a regular expression of the content subtypes that should be linked from the pathbar.

• configure($c) - creates and processes a form to reconfigure the content object $c, including content parameters,
metadata, and flags.

• update($c) - creates and processes a form to revise the content object $c using the HTML editor.

• rollback($c) - rolls the latest revision back, and republishes the content object $c.

ExSite v4 Content Model	 "18

Exware Solutions Inc.

• delete($c) - unpublishes and deletes the content object $c.

• copy($c) - copies the content object $c, and redirects the admin to the configuration screen for the new object.

• pricing($c) - displays tools to manage the pricing of content object $c.

• order($c) - displays tool to manage the sort order of the contents of $c.

• translate($c) - displays tools to manage the translations of $c.

• publish($c), unpublish($c), archive($c), approve($c), queue($c), unqueue($c), expire($c), reject($c) - change the
workflow status of content $c

Ancestor Inheritance
In addition to class inheritance, objects can inherit definitions from their ancestors.

As noted above, formats can include sub-formats from their ancestors using merge codes like [[>>foo]].

Metadata definitions are normally common to all objects of a given type, but you can make them context specific (ie.
inherited from ancestors) if desired. Allowed metadata are normally defined as follows:

	 content.metadata.product.option_color.datatype = string
	 content.metadata.product.option_size.datatype = string

This defines option_color and option_size as possible options for any product. Say that one particular category also has
an additional option (option_hand, ie. left or right) but you don't want that option to appear under every product in the
system, just in this one category. If the category ID is XXX, then you can add the context-specific option as follows:

	 content.metadata.XXX.product.option_hand.datatype = string

Then any product under content ID XXX will get that option as well. Because this can involve extra lookups, which
impacts performance, enable contextual metadata with the config setting

	 content.contextual_metadata = 1

You can also use settings (see above) in a similar way, making them apply only within certain sections or container
objects.

Converting v3 Websites
The script bin/convert3.pl assists with conversion of v3 websites. You must modify the parameters to connect to your old
v3 database. Use server.db to connect to your v4 database, and server.db1 to connect to your original v3 database. Run
the script from your v4 cgi directory

It converts:

• sections, pages, templates, libraries, and content objects

• alternate language pages

• aliased pages

• blogs, e-zines, articles, comments

ExSite v4 Content Model	 "19

Exware Solutions Inc.

• calendars, events, registration fees, and registrations

• catalogs and products

• web forms

• membership databases

• accounts, contacts, and sales information

• jgalleries (if you have a jgallery table)

Pages will conform to the original sitemap as much as possible. Templates and libraries will be given a high sortkey so
that they are positioned at the end of the sitemap. It will attempt to embed forms in the pages that use them; otherwise
they will be placed under a Forms container page. It will attempt to embed blogs and e-zines under pages that use them,
otherwise they will be placed under the section. It will try to re-write oysters for QA, Zine, Blog, VMenu, and ImageRotate
to point to the converted objects.

There are some configuration settings at the start of this file that control how some content gets converted:

• $latin1_to_utf8 - enable this if the old site still uses latin1 encoding

• $profile_contact_type - if membership profiles should have a visible address card (eg. a place of business), indicate
which contact type should be used for that purpose

• $profile_title_template - how to title membership profiles; the default is "[[first_name]] [[last_name]]" but you might want
to include titles, organizations, or other info here.

• $copy_invalid_finances - enable this if you want to include invalid invoices, cancelled payments and other ignored
financial data.

You will need to do the following manual steps after the automatic conversion has completed:

• Eliminate unnecessary service pages; service pages for things like blogs, e-zines, calendars, etc. are redundant, since
the blog itself serves as this page.

• Eliminate redundant container pages; for example, a News page (which typically contains a Blog plug-in) is no longer
necessary, because the Blog itself serves this function. You can move the new blog in place of the old News page, and
discard the old News page.

• Fix dupe names; name collisions will be resolved by adding some random text to the conflicts. You should remove the
unncessary dupes, and then rename the survivors to simplify.

• Eliminate, convert, or update various plug-in oysters.

• Update stylesheets to support new mark-up, and eliminate old rules.

ExSite v4 Content Model	 "20

Exware Solutions Inc.

Plug-in Module Notes

Content
This is a rudimentary content management plug-in application, which can be used as a base class for other CMS tools. It
also works as a simple barebones CMS.

Content Management
This is the full-featured CMS application that exposes the most CMS features to the end user. It replaces Website
Manager, which no longer exists.

E-Zines
Use Blogs instead for posting article feeds. Use Forums for forum management, and Comments for comment
moderation.

To auto-embed images into articles, you can insert content objects under the article.

There is a Zine plug-in, but it only provides some basic aggregation functions such as recent articles across all blogs.

My Website
Note that the page preview and edit screens are actually control panel URLs now, not page URLs as they used to be.
Copying/pasting these URLs for the public will not work.

Photo Albums
Note that there is now a distinction between albums (photo collections that are displayed together, like a gallery) and
libraries (photo collections where the images are used individually here and there on the site). Albums are a simple
replacement for gallery and slideshow plugins. Galleries are manually sortable.

Keyword Tags
Note that you can maintain any number of distinct indexes/dictionaries.

Forms
Replaces the old QA (Web Forms) module.

When creating questions you have the option of defining a new question from scratch or copying one from an existing
form.

Note that many HTML5 input types (such as date, time, email, etc) are supported. These use native HTML5 browser
support, which varies across browsers.

Product Catalogs
To add product options, define product metadata with the name option_Name. For example:

	 content.metadata.product.option_Color.datatype = text

The "Option Color" field will then show up under product configuration. Enter your |-separated list of options into this
field. If you leave this field blank for the product, the option will be ignored.

Registration
Registrations now follow a ticketing model, which means:

ExSite v4 Content Model	 "21

Exware Solutions Inc.

• events have an inventory of tickets to sell

• ad-hoc ticketing means that new tickets are created as needed on the fly; otherwise the ticket inventory determines
the event capacity

• tickets can in principle be tagged with specific seats or other unique identifiers

• tickets can be in a reserved state, meaning they are designated but unpaid; they can also be in a held state,
meaning selected for purchase, but not checked out. This prevents overselling events, because another registrant
cannot grab a held ticket until it gets released back into the sales pool

Fees have a much simpler structure. To mask fees from registrants in other categories, provide a comma-separated list
of Fee ids to hide from in the "Hide from fees" configuration field.

Pricing options will be appended to registration forms on control panel registrations. For admin-only comp fees, add a
$0.00 price that is available to admins only, and it will be included in those pricing options.

Address Book
There are significant differences in the structure of address cards in v4. The contact record itself contains no contact
information; the content information is in the attribute-like contact_info records. That makes it more extensible, and more
flexible for security (access can be granted field-by-field rather than for whole cards. However, it will complicate contact
queries, especially on multiple fields.

Memberships
Note that memberships are a product that is purchased and associated with a user. That means that one user can own
multiple memberships. The content object is the membership itself - the profile, to be more specific. It sets up its expiries
and other term limits using date/task management.

Security Manager
Also allows you to review all system administrators.

To-Do
This tool shows any pending/incomplete to-do tasks that have been entered through the CMS date tools.

Users
This replaces the old Members app, and also provides group management features.

Financial Reports
Includes GL code reporting options.  

ExSite v4 Content Model	 "22

Exware Solutions Inc.

ExSite::Content API - CMS Base Class
The Content class provides all of the basic CMS services required by various different subsystems, including:

• revision control, archiving
• alternate views (eg. thumbnails)
• level-based access controls (public, member-only, administrator-only)
• group- and role-based access controls
• publishing
• scheduling, queuing
• workflows, moderation, approvals
• hiding content from navigation, search, robots
• metadata management
• URL management
• tagging
• translation, multilingual services
• pricing
• search

Different classes of content will inherit from this class to get the basic CMS behaviours, which they can then overload to
define their specific class behaviours.

Content Identification
Every content object has a unique numeric ID. Additionally, it has a unique path, an alphanumeric string that is used to
identify the content in URLs, eg. http://foo.com/foo/bar. The path is comprised of the names of the content object and
its ancestor objects, so it is also a list of names that have to be traversed to get to the object in the overall heirarchy.

The name does not have to be unique across the whole website, but it should be unique for all content objects that
share the same parent ID, in order to ensure that the path is unique.

There can be one "anonymous" node with no name, but it must be at the root of the tree. So the above path could refer
to either one of

	 foo -> bar

	 [anonymous] -> foo -> bar

Content objects typically publish to directories that match their path, and can be viewed at an URL like:

	 http://foo.com/foo/bar

They can also be viewed dynamically as a formatted web page:

	 http://foo.com/cgi/ex.cgi/page/foo/bar

or as bare content:

	 http://foo.com/cgi/ex.cgi/view/foo/bar

ExSite v4 Content Model	 "23

Exware Solutions Inc.

Different content classes can alter their publication rules to vary the published location. For example, events can publish
to dated directories like /calendar/2012/11/event.html.

Setup
Create your content object in one of the following ways:

By its content ID:

	 my $c = new ExSite::Content(id=>99);

By its whole or partial data record:

	 my $c = new ExSite::Content(data=>\%content);

By its name (you must provide a parent ID):

	 my $c = new ExSite::Content(name=>"foo",parent=>99);

By its path:

	 my $c = new ExSite::Content(path=>"/foo/bar");

By the path requested in $ENV{PATH_INFO}:

	 my $c = new ExSite::Content(path=>1);

Converting Content Type
The above calls will instantiate an object of class ExSite::Content. This might not be the correct class, in which case you
will get incorrect object behaviours. If you know the object is actually of another class, you could instantiate that class
directly, eg.

	 my $p = new ExSite::Page(id=>99);

or, you can ask the object to convert itself to the most appropriate class:

	 $c = $c->get_content_obj();

If you already have another content object handy, you can often do this in one step. For example, to make an object from
a content ID:

	 my $newc = $c->get_content_obj($id);

Or, to make an object from a content record:

	 my $newc = $c->get_content_obj(\%content);

When used this way, neither of these calls affects object $c in any way.

Basic Object Queries
The Content class inherits from the ObjectMeta class, and has all of the behaviours of a standard ExSite object with
metadata. For example:

	 my $val = $c->getdata($column); 	 # fetch a raw data value

ExSite v4 Content Model	 "24

Exware Solutions Inc.

	 my $val = $c->showdata($column); 	 # safely display a data value
	 my @err = $c->validate(); 	 # validate the record contents

...and so on. See the documentation for Object.pm and ObjectMeta.pm for more information.

In addition to the basic Object methods, there are also the following Content-specific methods for obtaining information
about the object.

Content names:

	 $c->name() 	 	 	 # used in URLs
	 $c->title() 	 	 	 # used in page titles, headings
	 $c->label() 	 	 	 # used in hyperlinks to the content

Relationships to other content objects:

	 $c->parent() 	 	 	 # returns the parent object
	 $c->template() 	 	 	 # returns this object's template
	 $c->master() 	 	 	 # returns this object's original reference content object
	 $c->alias() 	 	 	 # whether or not we were redirected to this content from an alias
	 $c->is_in($c2) 	 	 	 # whether $c is contained within $c2
	 $c->my_ancestor($type) 	 	 # nearest ancestor of a certain type
	 $c->my_page() 	 	 	 # nearest page-like object that contains us
	 $c->my_section() 		 	 # the section that contains us
	 $c->my_root() 	 	 	 # the highest-level object that contains us

Status of this content object:

	 $c->has_content(); 	 	 # true if this object contains its own revisions
	 $c->is_static(); 	 	 	 # true if this object publishes
	 $c->is_viewable(); 	 	 # true if this object is okay for regular viewing
	 $c->is_active(); 	 	 	 # true if this object is useable
	 	 	 	 	 # (is_active is same as is_viewable for non-interactive content)
	 $c->is_public(); 	 	 	 # true if this object can be shown to the public

The type/behaviour of this content:

	 $c->subtype(); 		 	 # for example content, library, article, page, etc.
	 $c->isubtype(); 	 	 	 # the numeric type that corresponds to the above
	 $c->is_page(); 	 	 	 # does this content behave in a page-like way?
	 $c->is_subdir(); 	 	 	 # dies this content publish to its own directory?
	 $c->my_subdir(); 	 	 # the actual subdirectory name we publish to
	 $c->filename(); 	 	 	 # the filename we publish to

is_page() determines whether the content is page-like. A "page" is a primary navigation destination on your site, and will
determine certain default behaviours, such as whether to include links in menus. For the base Content class, is_page()
returns FALSE. You should overload this if your content object is page-like. (You may also want to inherit from the Page
class to get other page behaviours.)

ExSite v4 Content Model	 "25

Exware Solutions Inc.

is_subdir() determines whether this content is published as directory or as a file. If as a directory, it will have a static URL
like /foo/bar, whereas if as a file, it will have a static URL like /foo/bar.html (and will publish into the parent's directory).
The base Content class publishes as files, but higher-level classes can override this.

my_subdir() is the actual subdirectory name we publish to (which may be blank for the anonymous root node).
my_filename() is the filename we publish to, which will typically be NAME.EXT where NAME is $c->name() and EXT is the
appropriate MIME-type suffix. For page-like objects that publish into their own directory and are HTML, the filename
defaults to index.html.

Use the info() method to obtain a bunch of technical info about the current revision of the content, such as filenames,
mime-types, sizes, and image dimensions.

	 my $info_string = $c->info(); 	 # returns descriptive string
	 my %info = $c->info(); 	 	 # returns all info in a hash

Content Dates
The following calls will return date information about the content:

	 $c->getdata("ctime"); 	 	 # creation time of the content record, as a timestamp
	 $c->getdata("mtime"); 	 	 # last modification time of the content record, as a timestamp
	 $c->getdata("ptime"); 	 	 # original publication of this content, as a timestamp
	 $c->posting_date(); 	 	 # ctime, but as an ExSite::Time object
	 $c->age(); 		 	 # time since creation, in days
	 $c->revision->timestamp(); 	 # creation time of the current revision
	 $c->revision->getdata("ptime"); 	 # publication time of the current revision

In addition to these timestamps, there is also a general-purpose date service that content objects can make use of. This
lets you assign arbitrary dates to any content object. There are 5 general types of dates you can add to a content object:
• task - this is used for scheduling purposes, ie. the date is a trigger time for some task you want to be performed au-

tomatically
• calendar - this is used for calendaring purposes, ie. the date is used for organizing and displaying content by date
• log - this is used for recording a timestamped note on the content
• todo - adds items to the To-Do list; these may generate reminder emails on the specified date, and will also appear in

the ToDo plugin app
• other - any dates that do not fit into one of the above categories

To use the date service, you can use the following calls:

	 $c->get_dates($type); 	 # returns an ObjectList of dates; pass $type to fetch only dates of that type
	 $c->log($message); 	 # add a date of the “log” type to the content
	 $c->todo($message);	 # add a to-do task associated with this content

Metadata
Object metadata is stored separately from the core data, and can be accessed using the following methods:

	 $c->meta(); 	 	 # returns metadata object, for metadata manipulation
	 $c->get_metadata(); 	 # returns all metadata, as a hash

ExSite v4 Content Model	 "26

Exware Solutions Inc.

To find the "best" metadata under a given name, use something like

	 my $val = $c->dcmeta("description");

This will look for an appropriate metadata item under DC.Description, Description, and description, in that order. The first
one (DC.Description) is the industry-standard "Dublin Core" metadata format, which defines the following metadata
names: DC.Title, DC.Creator, DC.Subject, DC.Description, DC.Publisher, DC.Contributor, DC.Date, DC.Type, DC.Format,
DC.Identifier, DC.Source, DC.Language, DC.Relation, DC.Coverage, DC.Rights. Because of their industry-standard
nature, these will be preferred over other, similar metadata, if they are defined.

Additionally, you can use the following methods to obtain metadata-like values, even if no metadata is actually defined.
The object will find something appropriate to use regardless:

	 $c->title();
	 $c->author(); 	 	 # checks both author and creator
	 $c->description(); 		 # checks description, abstract, and summarizes content, otherwise
	 $c->caption(); 	 	 # checks caption, description, subject, and title

Different content types can predeclare the metadata that they support in the system configuration. The configuration
setting content.metadata.SUBTYPE.METANAME should be set to a dbmap-like hash of settings (such as datatype, size)
that describe the acceptable values. For example:

	 content.metadata.location.longitude = { datatype=>”decimal” }

If you are creating a plug-in application, you can define metadata (among other content settings) using this configuration
file notation:

	 -.content.metadata.location.longitude.datatype = decimal

Note the leading “-” which places the configuration setting into the global configurations, not the module configurations.

Flags
Flags are metadata-like booleans. Rather than store name/value pairs, they store only names. If the name/flag exists, the
boolean value is true, otherwise it is false. Allowed flags are defined in the system configuration, using settings of the
form content.flags.SUBTYPE, which holds a list of recognized flags. For example:

	 content.flags.question = required
	 content.flags.question += checked

Work with flags using the following calls:

	 $c->flag($flag); 	 	 # returns the flag setting
	 $c->flags(); 	 	 # returns a hash of all flags
	 $c->set_flag($flag); 	 # turns on $flag
	 $c->unset_flag($flag); 	 # turns off $flag

ExSite v4 Content Model	 "27

Exware Solutions Inc.

Content Paths
There are numerous ways to describe the path to the content. Use the following methods:

	 $c->content_path(); 	 # returns an object list of the nodes traversed to get to this content object
	 $c->path(); 		 # a simple text representation of this path, eg. "/foo/bar"
	 $c->navpath(); 	 # a cookie-crumb style formatted list of links representing this path

When publishing to disk, we use the logical path to the content to build an actual diskpath.

	 $c->my_subdir(); 	 # the subdirectory name that this content publishes to, if it publishes as a directory
	 $c->filename(); 	 # the filename that this content publishes to
	 $c->basedir(); 	 # our HTdocs directory; the root of our published files
	 $c->subdir(); 		 # our complete set of subdirectories relative to basedir()
	 $c->diskpath(); 	 # basedir + subdir
	 $c->httpbase(); 	 # our base path element in the URL, $config{server}{HTMLpath}
	 $c->httpdir(); 		 # our URL path relative to httpbase();
	 $c->httppath(); 	 # our URL path relative to the docroot, httpbase + httpdir

Displaying the Content
To fetch and display your content, you have 3 general approaches:

• get HTML to render the content

• get an URL to visit the content

• get the raw content data (for example, the JPG data)

The following methods can be used:

Getting HTML
• show(%opt)

This returns HTML to render the content in a web browser. It should return an HTML snippet that can be inlined into
another document. If the content is a page, then it should return the complete HTML document.

Use $c->show(view=>$viewname) to explicitly display a different view than the default.

• show_templated(%opt)

This call always returns a complete web document; the content will be wrapped up in HTML to give it the same
appearance as a full web page on this site.

It will use the template setting for the content object to determine which template HTML to use to wrap up the object. If
template is not defined, it will find something appropriate based on the pages or sections we are nesting under.

For pages, show() and show_templated() should give the same results.

• show_formatted($format,%data)

ExSite v4 Content Model	 "28

Exware Solutions Inc.

This allows for on-the-fly custom formats to display the content. $format is either the name of a predefined format (kept
in $config{content}{format}{...}, or a fully-specified template with merge fields. ExSite::Misc::substitute is used to merge
the data, so you can use codes like:

	 [[foo]] - insert foo here

	 [[?foo]]TEXT[[/?foo]] - insert TEXT if foo is defined

	 [[!foo]]TEXT[[/!foo]] - insert TEXT if foo is not defined

The allowed substitution parameters include:

	 about 	 # posting info, such as author, date
	 attachments	 # a listing of file-like subcontent for downloading
	 author 	 # author name
	 caption 	 # caption
	 curl 	 # canonical URL
	 date 	 # posting date
	 description 	 # description, or summarized content
	 gallery	 	 # a thumbnail gallery of image subcontent
	 height 	 # image height
	 html 	 # content HTML
	 icon 	 # an icon to represent the content
	 id 		 # the content ID
	 image	 	 # best image associated with the content
	 index 	 # an HTML listing of sub-contents
	 info 	 # description of the file, such as mime type, size
	 label 	 # hyperlink anchor for the content
	 language 	 # the langauge, if not the default
	 link	 	 # dynamic url to the content
	 mime_type	 # MIME type of the content
	 mime_descr	 # natural-language description of the MIME type
	 mime_category	 # the general type (eg. image, text, application)
	 name 	 # the content name, as used in URLs
	 navpath 	 # HTML to show a cookie crumb to this content
	 price	 	 # price
	 purl	 	 # permalink URL (best user-friendly URL)
	 summary 	 # description, or file information
	 tools 	 # links to operate on the content
	 title 		 # title
	 type 	 # content type, such as library, page, article, etc
	 url 		 # current URL to the content
	 width 	 # image width
You can also substitute any metadata, using:

	 meta_FOO 	 # metadata "FOO"

ExSite v4 Content Model	 "29

Exware Solutions Inc.

You can also substitute views other than the one you are working with. Replace VIEW in the following with the view you
want, such as “small” or “thumbnail”:

	 url_VIEW 	 # URL to this view

	 html_VIEW 	 # HTML to render this view

You can also subsitute other content objects into the display of this one. (For example, inlining images into an article.) In
the following parameters, replace ... with any of the above to get the appropriate parameter for the specified content:

	 NAME:... 	 # any of the above parameters for content object NAME

	 _FIRST:... 	 # any of the above parameters for the first subcontent item

	 _LAST:... 	 # any of the above parameters for the last subcontent item

	 _IMG:... 	 # any of the above parameters for the "best" image of the subcontent items

	 index_TYPE	 # an index of subcontent of TYPE

	 contents_TYPE	 # a full listing of subcontent of TYPE

If you pass any unknown parameter such as FOO, the system will ask the content class if it supports that parameter (via
a method called param_FOO). If such a method exists, it will be called to fetch the appropriate substitution data.

• summary()

The summary is generally used when an abbreviated view is required, such as in listings or indexes.

This is just shorthand for

	 $c->show_formatted("summary");

However, because the summary wants to display a description, and there often is not a good description available, this
call will attempt to compose a useful description first.

• preview()

preview() is a special display of the content, for administrators. By default, it shows all existing views of the content, in
both normal and source form. This should be overloaded by other content classes that have different content
managment requirements.

• report()

This displays technical information about the content.

• get_html()

This retrieves the raw HTML for the current revision. For simple content objects, this should give the same results as
show().

Getting URLs
There are numerous URLs you can use to obtain/view content:

ExSite v4 Content Model	 "30

Exware Solutions Inc.

	 $c->get_url() 	 # current best URL to the content
	 $c->get_url_dynamic() 	 # the dynamic URL to the content
	 $c->get_view_url_dynamic() # the dynamic URL to view the bare content
	 $c->get_page_url_dynamic() # the dynamic URL to view the content formatted as a page
	 $c->get_url_static() 	 # the static URL to the content
	 $c->get_url_canonical() 	 # the canonical URL to the content
	 $c->permalink() 	 # the best human-friendly URL to the content
	 $c->get_uri() 	 # a URI object representing get_url_dynamic()
	 $c->get_page_uri() 	 # a URI object representing get_page_url_dynamic()
	 $c->link(%args) 	 # modify the dynamic URL with other parameters
	 $c->admin_url()	 	 # URL to an admin control panel that is suitable for managing the content

With link(), the content object can generate a dynamic link in two styles:

• by path, eg. /cgi/ex.cgi/page/path/to/page - this is best for public content views

• by id, eg. /cgi/ex.cgi/admin/Foo?id=555 - this is best for back-end admin views

It will choose the latter method if the content object has its internal attribute content_link_type set to “id”.

Sub-content
Some content objects can contain other content. In the base content class, this is not possible, but higher classes (for
example, libraries, blogs) may not actually have their own revisions, just sub-content.

Use the following calls to obtain sub-content. You can optionally pass a type if you want to restrict the listing to only that
class of item.

	 my @clist = $c->get_contents($type); 	 # returns an array of content objects
	 my $list = $c->get_contents_as_list($type);	 # returns an ObjectList
	 my %c = $c->get_contents_as_hash($type);	 # return a hash indexed by content name
	 my $n = $c->count_contents($type); 	 # returns the number of sub-content items
	 my $c = $c->my_content($name);	 	 # returns just the named content object

For menus and submenus, you want the subcontents that are page-like. (Note that this list includes hidden pages that
should not be displayed in menus.)

	 my @submenu = $c->my_submenu_items(); 	 # children of this node
	 my @menu = $c->my_menu_items(); 	 # also includes this node as the top item

If you want to get all descendent nodes, not just the immediate children, use:

	 my @all = $c->get_descenants(@type); 	 # you can pass multiple types

Indexes
Indexes are HTML listings of sub-content items. Typically these are hyperlinked so that the viewer can use the index to
find and visit the other content items.

	 $out .= $this->index(); 	 	 	 # display an index to the contents

ExSite v4 Content Model	 "31

Exware Solutions Inc.

Other content classes can overload this to provide their own specialized indexes.

When automatically generating links to sub-content items, you can also make use of:

	 $out .= $c->attachments();	 	 	 # display sub-contents as files to be downloaded
	 $out .= $c->gallery();	 	 	 # display sub-contents an an image gallery
	 $out .= $c->insert_image();	 	 	 # find and display a suitable image

Note that an RSS feed is just a specialized index, formatted as an RSS XML file. You can generate this XML using this
call:

	 $xml = $this->rss();

tools()
tools() generates the links that are needed to interact with the content. For regular content objects, there are none. Other
content classes can overload this to provide additional functions.

Examples of common types of tools displayed by different content types are:

• RSS feeds

• post functions

• archives

• add to cart

Finding Content
Starting from any given content object, we can find other content given only a name. Because names are not unique
system-wide, there is a particular order we search in:

1. search the children of the current node

2. search the children of the current page

3. search the children of our template (and the template's parents)

4. search the children of the current page's template (and parents)

5. search our descendant nodes

6. search the children of our section's template (and parents)

7. search the libraries of this section (and parent sections)

To perform such a search directly, use:

	 my $best = $c->find($name);

$best will be the best-match content object named $name.

Content Expansion
HTML content can contain substitution tags like the following:

ExSite v4 Content Model	 "32

Exware Solutions Inc.

	 <!--content(NAME)--> 	 # insert HTML for content NAME here

	 [[NAME]] 	 # insert URL to raw content for NAME here

	 {{NAME}} 	 # insert URL to templated (page-like) content NAME here

	 <!--$META--> 	 # insert metadata META here

	 <!--&MODULE(options)--> # insert plug-in MODULE content here

If the content object contains HTML, you can automatically substitute all of the tags by calling:

	 my $html = $c->expand(%option);

%option can contain the following options:

	 html => $starting_html

Use this if you want to start from something different than the current content object's HTML.

	 method => "data,url,content,page,module"

Use this switch to control which substitutions will be performed. You can pass a list of any of the above 5 substitution
types.

	 expand => "template"

Assume the content being expanded is a template, not actual content. This will leave certain items unexpanded.

$c->unexpand() undoes the content expansion so that it can be restarted.

get_dynamic_content()
	 my $html = $this->get_dynamic_content($module,$args,$option);

Return replacement text for a <!--&Module(...)--> CMS tag

Loads the $module plug-in, and calls its write() method, passing the $args to it. Returns the output of the module. If the
module fails to load/compile, a Perl error string will be returned.

$option is the same as is passed to expand(). If the "expand" option or "dummy-module" methods are selected, a
placeholder image will be substutited instead of the module content.

If the "static-module" method is selected, each module will be queried to see if its output is static for this page; only if
static will the content will be substituted. (This allows for precompiling certain modules' output, eg. menus, while
rendering others at page view time.)

get_dynamic_content_indirect()
	 my $html = $this->get_dynamic_content_indirect($module,$args,$option);

This is an AJAX version of get_dynamic_content().

This method returns replacement text for CMS tags of the form:

	 <!--&&Module(...)--> # indirect substitution, direct re-links

ExSite v4 Content Model	 "33

Exware Solutions Inc.

	 <!--&&&Module(...)--> # indirect substitution, indirect re-links

This fetches the DCD content using a separate server request, instead of inlining it directly.

The main advantage is that you can publish the main page to a static HTML file, yet keep some page elements dynamic.
This is especially useful for index.html pages, which must be static, but may contain dynamic elements (eg. recent news,
upcoming events, current specials, etc.). The solution is either continuous republishing of the index page (which may still
be a better solution for heavily loaded sites) or using an indirect dynamic content fetch.

The disadvantage is that the full page is slower (although the base page may be much faster), and that JavaScript must
be enabled to perform the secondary content fetches.

The '&&' variant does direct re-links, ie. links from the dynamic content point to full URLs that generate a new page. The
'&&&' variant does indirect re-links, ie. links back to the same module in the same page only fetch the DCD content and
inline it dynamically into the current page without generating a whole new page.

Revision Control
The content itself gets updated in the form of revisions. Each update creates a new revision record tied to its content
record. The most recent revision is the newest revision, while the most recently publish revision is the active revision.

By default we load the active revision, since that is the one approved for public viewing. To use the newest or draft
revision instead (for admins, for instance), add a cms flag when creating your content object, to tell the system that you
are doing CMS work:

	 my $c = new ExSite::Content(id=>99,cms=>1);

To obtain the revision that the content object is using, use;

	 my $r = $c->revision();

To set the revision of the content object to a different revision, use:

	 $c->load_revision($rev);

where $rev is "draft", "newest", "active", or a numeric revision ID for some other revision.

To fetch a different revision, without changing the current content object, use:

	 $c->find_revision($rev);

To make calls to the current revision, use calls like:

	 $c->revision->mime_type();

The full list of calls is documented in the ExSite::Revision class, below.

revise(%opt)
Adds a new revision to this content object. Options are:

• data - The raw data for the view(s). For file uploads, should be an encoded file.

• format - The format of the data, ie. text, file, path, url.

ExSite v4 Content Model	 "34

Exware Solutions Inc.

• mime_type - The mime_type of the data. Optional - will be guessed if not provided.

• attributes - A hash of attributes and values.

• status - defaults to 0/published, but can be set to 5/draft

• note - A revision control comment.

• view - A hashref with instructions for generating views. Each hash item is of the form

 viewname => 1

or

 viewname => \%cview_datahash

where viewname is one of the recognized view names, ie. large, normal, small, thumbnail, or icon. If the view is defined
as a datahash, it will be installed as defined. Otherwise, if the view is defined as TRUE, the system will attempt to
generate the view automatically. This is normally only possible for images, which can be rescaled for different views.

Publishing
Publishing is initiated by the publish() method, but this is just a switcher that determines whether the process has
permissions to publish to the HTDOCS or not. If not, it forks a privileged publisher process to continue the job; this
process ends up in the publish method as well, but since it has the privileges, it calls publish_content() instead to do the
actual publishing. In v3, you had to make this determination yourself, and call run_publisher() to get the necessary
permissions, but v4 takes care of this automatically; you only have to call publish().

publish_content(%opt)
This performs the actual publishing of files. The generic version in ExSite::Content is probably suitable for all content
types, and delegates to different publishing methods:

publish_self(%opt)
This publishes the files for the selected content object.

publish_parent(%opt)
This publishes the object that contains the selected content object. This will, for instance, republish indexes (such as a
blog or calendar) when the contents (such as an article or event) is added or changed.

publish_children(%opt)
This publishes all items that are contained by the selected content object. For instance, if you publish a blog, it will
publish all of its articles as well. This function is recursive, so that the children of each of the children will also be
published, and so on. If you publish a section object, this will effectively republish the entire site.

Workflows
Every content object is in one of the following states:

0. published: visible to visitors, and all interactive features are available.

1. archived: visible to visitors, but content is no longer current or maintained. Will not be linked from regular menus or
indexes. Interactive content types (for example, forums, comments) may cease being interactive when archived. (In
other words, comments will stop accepting replies.)

ExSite v4 Content Model	 "35

Exware Solutions Inc.

2. queued: similar as approved, but will be published automatically by the queuing system

3. approved: ok to publish, but not published yet; will automatically be published next time publisher is manually run.

4. submitted: pending approval/moderation

5. draft: content is being worked on, will not publish automatically.

6. expired: content is no longer approved for viewing, but may be reinstated

7. canceled: content is not suitable for viewing by visitors, but will be retained for archival purposes.

8. rejected: content is considered junk, and can be removed by garbage collectors.

Workflow actions move the object to a new state, eg. publish, archive, queue, approve, submit, draft (save as draft),
expire, cancel, reject. Content moves toward the publish end of this spectrum when moving onto the site, and away
from the publish end of the spectrum when being moved off the site.

The publish and archive workflow actions will also try to write out files if the content is already unpublished. The remaining
actions will attempt to remove files if the content is already published.

Content moderation consists of reviewing and approving/publishing items that are in a draft or submitted state. For
example, comments can be reviewed, and then either approved or rejected. If you are approving many comments, it is
faster to approve them individually, and then republish the whole forum or blog post once. If approving only one, you can
skip the approve step and go straight to publish; this takes longer, so it will be tedious to repeat this if approving multiple
comments.

ExSite::Revision
Every time a content object is updated, we create a new revision to track the changes. Old revisions are kept on file until
explicitly deleted. We can track an unlimited number of old revisions.

Certain revisions have special importance:

• active - The active revision is the most recently published one. It is the one that is viewable to the public.

• newest - The newest revision is the most recently added one. It has not necessarily been approved for public viewing
yet, in which case it is only visible to administrators. When the content is published, the newest revision will become
the active revision.

• draft - The newest revision can optionally be added as a “draft”. Unlike regular "newest" revisions, draft revisions will
not be published. It must be resaved or approved as a non-draft revision before it can be published.

By default, when entering new revisions, they will save as the “newest” revision, unless you use a special “save as draft”
submission button.

Setup
There are different methods for creating a revision object:

To get the current revision used by a content object:

	 my $r = $content->revision();

ExSite v4 Content Model	 "36

Exware Solutions Inc.

To select a specific revision for a particular piece of content:

	 my $r = $content->find_revision($rev)

$rev can be "active", "newest", or a particular revision ID. It defaults to active.

To create a revision directly:

	 my $r = new ExSite::Revision(id=>$revision_id);

	 my $r = new ExSite::Revision(data=>\%revision_data);

In both of these cases, you can also optionally pass content=$content_object if you know it. This will speed up some
operations that need to know the context.

Revision Management
	 is_published()

Returns true if the revision has ever been published.

	 publish()

Write the revision's files to disk, if possible. Regardless of whether any files are written, we mark the revision as
published, which means it is viewable by the public.

	 unpublish()

Remove the revision's files from disk.

	 copy(%data)

Copy this revision, and all its views. Updates the note to reflect that it is a copy. A revision can be copied to another
content object by passing the the content_id in the parameter data.

	 restore()

Uses copy() to creates a new revision that is identical to this revision. This is used to "restore" an old revision to use,
without rolling back through all the intermediate revisions.

Views
The actual content is stored in views. The revision itself only contains information about the update, such as timestamps
and changelog notes. There are 5 supported views: normal (default), large, small, thumbnail, and icon. Most revisions will
consist of a normal view, plus some optional alternate views.

The normal view is selected by default, but you can select a different view using:

	 $r->select_view($preferred_view);

To return the current selected view, use:

	 $r->view();

ExSite v4 Content Model	 "37

Exware Solutions Inc.

where $preferred_view is one of normal, large, small, thumbnail, or icon. If your preferred view is not available, it will
select the closest matching view. Use the following calls to get information about the available views:

	 $r->has_views(); # returns true if ANY views are available
	 $r->has_view($view_type); # returns true if the given view is available
When you ask to display a revision or fetch its URL, the result will reflect the selected view. In fact, most calls to fetch
information about the actual content will simply be passed through to the selected view, such as:

	 $r->is_file();
	 $r->is_image();
	 $r->is_text();
	 $r->get_fileinfo();
	 $r->filename();
	 $r->get_raw();
	 $r->get_html();
	 $r->get_html_dynamic();
	 $r->get_url();
	 $r->get_url_static();
	 $r->get_url_dynamic();
	 $r->show();
	 $r->httppath();
	 $r->diskpath();
There are also some shortcut calls to access commonly-used views:

	 $r->get_thumb();
	 $r->get_thumb_html();
	 $r->get_thumb_url();
	 $r->get_thumb_raw();
	 $r->get_icon();
	 $r->get_icon_html();
	 $r->get_icon_url();
	 $r->get_icon_raw();
	 $r->get_generic_icon_url(); # finds an icon, even if there is no such view
If you request the MIME-type of a revision, however, you will get the original MIME-type of the revision. In principle, views
could have different MIME-types than the original content. For instance, if revision is a video, but you include a “small”
view, which is just an image still, that view will have an image MIME-type instead.

ExSite::View
Every revision of a content object can be broken down into one or more views. The supported views are:

• normal - This is the default view of the content, intended for insertion into a regular web page. If the content is an
image, it is scaled to a typical web page body width (by default 512 pixels).

• large - If the original data is larger than the normal view, we can optionally retain it in its original form as a large view.
(The CMS may nevertheless scale it down if it too large to save in the CMS.) Large views are also suitable for HD video
that is larger than what would be served to viewers by default, large or uncompressed documents, and so on.

ExSite v4 Content Model	 "38

Exware Solutions Inc.

• small - A small view is intended to be used with content summaries, such as are used in listings and indexes. Small
views of text content include abstracts, teasers, and summaries. Small views of images are typically scalled down (by
default to 256 pixels) so that they can be floated left or right of the surrounding text. Small views of documents might
consist of simply the cover or introduction.

• thumbnail - Thumbnails are normally used for images. A thumbnail view is scaled to a good size for aggregating into
thumbnail grids or "contact sheets". If a thumbnail view is requested, we scale it down to the system thumbnail size
(typically 100 pixels). For other types of content, we can install image thumbnails so that they can also be presented
this way.

• icon - An icon view is an extra-small view that is typically used for listing files or downloads. They are small enough to
inline into text. Icon views are not automatically generated. The system can be asked to provide a generic icon (eg.
suitable for the content's mime-type) if no specific icon is installed.

Setup/create your view object in one of these ways:

	 my $view = $revision->select_view($viewtype);
	 my $view = new ExSite::View(id=>$view_id);
	 my $view = new ExSite::View(data=>\%viewdata);
Internally, the view is stored in one of 4 formats:

• as a file that was uploaded

• as text that was entered directly

• as a path to some other file on the server

• as an URL to a remote resource elsewhere on the web

You can obtain the particular format used in a view using:

	 $view->format();
	 $view->is_file(); # true if file format
Storing files in file format is simple, but can be costly from a database perspective, because it results in a large amount
of data transfer from the database server, plus an encoding/decoding overhead. If you set the configuration parameter

	 content.install_files = 1

then the underlying Diskfile object will attempt to write the files straight to disk, and then use the path format to reference
the file. Doing this saves performance on database transfers, file decodes, and publishing overhead.

Disk Files
In cases where the view can publish as a file (such as images, stylesheets, documents, and so on), you can obtain a
Diskfile object that represents this file:

	 my $file = $view->diskfile();

This object is used for all publishing operations. See the documentation for ExSite::Diskfile for more information.

The filename that will be used for the current view is given by:

ExSite v4 Content Model	 "39

Exware Solutions Inc.

	 my $filename = $view->filename();

The original filename that was used to upload the file can be retrieved using:

	 my $orig_filename = $view->original_filename();

The publication location of the file can be obtained using:

	 $view->httppath(); # path in URL
	 $view->diskpath(); # full path on server

MIME-type
Each view records its own mime-type, which can be retrieved using:

	 my $mime = $view->getdata("mime_type");

If the mime-type is not recorded, we can make a guess based on the data or file extensions:

	 my $mime = $view->guess_mime_type();

You can also use this to guess the mime type of other content, by passing in the data directly in one of the 4 accepted
formats:

	 my $mime = $view->guess_mime_type($data,$format);

The simplified call:

	 my $mime = $view->mime_type();

does all of the above, as needed, to come up with a suitable mime-type for the content.

The following calls will also give you some more general MIME information:

	 $view->is_image;

	 $view->is_text;
	 $view->is_publishable; # true for all non-HTML MIME-types

Images
If the data is an image, you can fetch an ExSite::Image object for it:

	 my $img = $view->get_image();

You can also do the reverse, and pass an ExSite::Image object in as the data:

	 $view->set_image($img,$filename);

The following calls will work for images:

	 my $w = $view->width;
	 my $h = $view->height;
	 my ($w,$h) = $view->dim;

ExSite v4 Content Model	 "40

Exware Solutions Inc.

Retrieving/Displaying Data
Views can be output/displayed in 3 ways:

• HTML - The system will generate the necessary HTML to display the content.

• URL - The system will return an appropriate URL to retrieve the content, suitable for use in hyperlinks or as SRC=
attributes in img tags.

• raw - The system will return the raw content directly. This is suitable for delivering the content direct to the user's
browser, or writing it to a disk file.

Use the following methods:

	 $view->get_html();
	 $view->get_html_dynamic();
	 $view->get_url();
	 $view->get_url_dynamic();
	 $view->get_url_static();
	 $view->get_raw();
	 $view->show(mode=>"source"); # outputs displayable HTML source code
	 $view->show(mode=>"preview"); # displays from the database, not published files

ExSite v4 Content Model	 "41

	Introduction
	Content Structure
	Content Paths
	Dynamic URLs
	Static vs. Dynamic Content
	Permalinks and Canonical URLs
	Revisions
	Views
	Workflow
	Save as draft
	Content Object Types
	Metadata
	Generic Metadata
	Explicit and Implicit Metadata
	Flags
	Tags and Indexes
	Translations
	Building a Web Page
	Formatted Views
	Example Format
	Content Date Services
	Tasks
	To-do Lists
	Logbook
	Price Services
	GETs and POSTs
	Search
	Configuration Settings
	Metadata
	Contextual Metadata
	Formats
	Settings
	Behaviour Inheritance
	Class Inheritance
	Model (content behaviour)
	View (content appearance)
	Controller (content management)
	Ancestor Inheritance
	Converting v3 Websites
	Plug-in Module Notes
	Content
	Content Management
	E-Zines
	My Website
	Photo Albums
	Keyword Tags
	Forms
	Product Catalogs
	Registration
	Address Book
	Memberships
	Security Manager
	To-Do
	Users
	Financial Reports
	ExSite::Content API - CMS Base Class
	Content Identification
	Setup
	Converting Content Type
	Basic Object Queries
	Content Dates
	Metadata
	Flags
	Content Paths
	Displaying the Content
	Getting HTML
	Getting URLs
	Sub-content
	Indexes
	tools()
	Finding Content
	Content Expansion
	get_dynamic_content()
	get_dynamic_content_indirect()
	Revision Control
	revise(%opt)
	Publishing
	publish_content(%opt)
	publish_self(%opt)
	publish_parent(%opt)
	publish_children(%opt)
	Workflows
	ExSite::Revision
	Setup
	Revision Management
	Views
	ExSite::View
	Disk Files
	MIME-type
	Images
	Retrieving/Displaying Data

