
Exware Solutions Inc.

ExSite 4 Developer Guide

Introduction 1

CGI Programs 1

Database Changes 2

DB Maps	 3

Attributes & Metadata	 3

Object Handling	 3

Security	 4

Groups	5

Keys	 5

Security Roles	 5

Configurations 5

Settings	 5

Important/Useful New Configuration Settings	 6

Forms 6

Reports 7

Filtered Reports	 7

User Interface 9

Control Panels	 9

UI Class	 9

ML	 11

Page and Output Handling 11

Publishing	 11

CMS tags	 12

Exware Solutions Inc. 102-131 Water Street, Vancouver, BC V6B 4M3 T 604.684.9440 F 604.684.5894 morgan@exware.com www.exware.com

Exware Solutions Inc.

Metadata	 12

Javascript	 13

CSS	 13

AJAX	 13

Frameworks 14

E-Commerce Services 14

Shopping Cart	 14

Callbacks to Purchased Objects	 15

Purchase Locations	 15

GL Codes	 15

GL Code Mapping	 15

Payment GL codes	 16

Address Book 16

Forms 17

Plugin Development 18

Plugin Best Practices	 19

Should you rebuild your plug-in using the V4 CMS framework?	 19

Name of report	 "2

Exware Solutions Inc.

Introduction
ExSite is built in layers:

ExSite v4 is primarily an overhaul of layer 2, the CMS. The Kernel and Plug-in systems are very similar to v3. However,
although the Plug-in system is similar architecturally, many plug-ins will nevertheless get major revisions going into v4,
because:

• they dupe features that are now in the CMS, and should be rebuilt as special CMS classes

• their interactions with the CMS will change

• their UI will be updated and modernized

• the v4 transition is a good opportunity to "break" with old and tired methodologies since backward-compatibility is not
a concern

Changes to the CMS layer are covered in a separate document, ExSite 4 Content Model. This developer guide covers
new v4 features in the other layers.

CGI Programs
All CGI programs have been replaced with a single program, ex.cgi that provides a single entry point with common
security, configuration, database, error handling, and setup tools.

The general format of a URL is

	 /cgi/ex.cgi/COMMAND/path_info

The commands, and their relations to old v3 CGI programs are shown in this table:

4 Plug-in Modules (optional components with their own custom interfaces)

3 Plug-in Frameworks (optional shared data models, like Finance)

2 CMS (general-purpose tools for displaying web content)

1 Kernel (general-purpose tools for managing data & security, as well as the back-end admin system)

v3 v4
/cgi/login.cgi /cgi/ex.cgi/login
/cgi/logout.cgi /cgi/ex.cgi/logout
/cgi/home.cgi /cgi/ex.cgi/admin
/cgi/ctrl-panel.cgi/Module /cgi/ex.cgi/admin/Module
/cgi/page.cgi /cgi/ex.cgi/page
/cgi/content.cgi /cgi/ex.cgi/view
/cgi/doform.cgi /cgi/ex.cgi/doform

ExSite v4 Developer Guide	 "1

Exware Solutions Inc.

There is still a publish.cgi program (and unprivileged publish.pl counterpart) that handles the job of writing files to
HTdocs. However, it can be invoked using ex.cgi/publish (or by calling a publish method directly) – they will automatically
spawn a privileged publish job if necessary.

ExSite can be sped up by changing the #! line to use /usr/bin/speedy instead of /usr/bin/perl.

URLs can be simplified using URL rewrite rules that do something like:

	 /function/path -> /cgi/ex.cgi/function/path

for example:

	 /cgi/ex.cgi/page/foo could shorten to /page/foo

then set

	 server.CGIpath =
	 prog.page = page

to have the system generate its URLs in this format.

Note that when you use an URL shortening rule like this, you cannot name your base-level content objects the same as
any of your functions, as that creates an ambiguity that will prevent the content from being served as you expect it to.

Database Changes

Notes:

• section_id columns contain the content_id of a content record of type “section”. They might be replaced with
content_id columns, if they can be related to something more specific than a section.

• member_id has generally been replaced with UID.

/cgi/getdata.cgi /cgi/ex.cgi/peek
/cgi/publish.cgi /cgi/ex.cgi/publish (or /cgi/publish.cgi)
/cgi/dcd.cgi /cgi/ex.cgi/dcd
/cgi/dlg.cgi /cgi/ex.cgi/dialog

v3 v4

v3 v4
ExSite::SQL ExSite::MySQL
section, page, content content (with a type column)
content_data revision, view
member user
member_site_link content_key
keyword, keyword_tag deprecated, replaced with Index class and aliases

ExSite v4 Developer Guide	 "2

Exware Solutions Inc.

DB Maps
DB maps now support a help column. This replaces the old help files in cgi/dbmap/help/table/column. These columns
will be used to automatically add tooltips to your forms.

The enum: datatype works like a list: datatype, except that it returns an integer value instead of the text value. For
example:

	 list:onoff	 	 on|off

returns text values of either "on" or "off".

	 enum:onoff	 1:on|0:off

returns numeric values of 1 or 0, but displays text values of on or off to the user.

Attributes & Metadata
The attribute table (and ExSite::Attribute class) provides a generic metadata functionality, as in v3. This can be
overloaded to provide a more dedicated/specialized metadata feature for specific tables or types of data. V4 has a few
predefined specialized metadata tables/classes:

Use/inherit the ObjectMeta class on the extended object to get these metadata features. When calling the new() or
setup() methods of the extended object, you can optionally pass a metadata option to preload the metadata. This can
save some database reads in cases where you already have the data handy:

	 my $article = new ExSite::Article(id=>456, data=>$article, metadata=>$article_metadata);

	 my $contact = new Modules::ID::Contact(id=>123, data=>$contact_record, metadata=>$contact_info);

Object Handling
As in v3, an ExSite object is a software representation of a database record. This all works similarly to v3, with some
efficiency enhancements.

You can preload your objects with partial data if you have some of the record data handy. Simply pass your incomplete
datahash to the data=> parameter in new(). If getdata() requests data that is already present, no database load is
required. But it needs an efficient way to check whether it needs to load the full record if the data is not present. See
ExSite::Content::getdata() and ExSite::Content::loaded() for an example implementation of this feature.

The ObjectMeta class also lets you preload metadata into your objects if you happen to have it handy, which can also
save on database calls. Pass the metadata as a hash of key=>value pairs.

	 my $content = new ExSite::Content(data=>$cdata,metadata=>\%meta);

The ObjectList class will try to track metadata as well, if you provide it, and use this feature to preload object metadata
when you pull objects out of the list. To push a record and its metadata onto the list, use:

table class extends notes
attribute ExSite::Attribute any table used for preferences
metadata ExSite::Metadata content see v4 Content Model document
contact_info Modules::ID::ContactInfo contact contact information fields

ExSite v4 Developer Guide	 "3

Exware Solutions Inc.

	 $list->pushmeta($record,$metadata); # one object
	 $list->pushmeta(\@records,\@metadata); # multiple objects

Not all list operations will be able to preserve the metadata. In those cases, the metadata might get cleared, which will
force it to be reloaded from the database.

Objects also support an unload() method that tries to drop internal attributes that are no longer needed. This is useful
when looping over large data sets, to keep memory leaks under control.

When working with lists of content objects, extracting an object from the list will return a content subtype class, eg. a
Blog object instead of a generic Content object.

Security
There are now 10 access levels:

Levels 0-4 are regular website visitors, permitted to use the website front-end. Levels 5-9 are executive users,
permitted to access the website back-end. Levels 3-7 are undefined for now, and can be used for customizing local site
privileges.

DB maps must be upgraded to reflect this. Code should not test for absolute levels, but for user types. For example:

• is_admin (level 8+)

• is_manager (level 7+)

• is_executive (level 5+)

• is_visitor (level 4 or lower)

• is_member (level 2+)

• is_user (level 1+)

Privacy settings and access controls are now numeric. A privacy/access level of 2, for instance, means that the viewer
must be at least level 2 (an active member) to view the data or access the function.

old# name notes
0 0 public unauthenticated visitor
1 1 user authenticated user
2 member official or paid member
3 site-defined board members, committee leads, ... ???
4 site-defined
5 site-defined reviewers/moderators ???
6 site-defined
7 2 manager can perform all section-specific admin tasks
8 3 system administrator can perform system-wide tasks, can make keys
9 4 root all security rules disabled

ExSite v4 Developer Guide	 "4

Exware Solutions Inc.

Groups
You can create user groups using the security tools, and assign or remove arbitrary users to/from these groups.

Keys
Access keys can be assigned for any content object, not just sections. (However, sections remain the default way of
partitioning security.)

Access keys can also be revoked for particular content. To do this, set the key type to “revoke” instead of “grant”.
Revoked keys disable a certain type of access in that part of the site. For example, say user Admin has editorial
permissions on the main section. But on a particular page, you revoke those editorial permissions. The admin user’s
permissions will not extend to that page, or any below it.

Keys can be granted to individual users, or to groups. Group keys can be used by everyone in that group.

Security Roles

The reviewer role controls moderation and approval of submitted and draft content.When new content requires approval,
the reviewers will be consulted first.

The owner role is for content that originates from non-executive users. (For example, a regular member could have
permission to publish content that they owned, such as postings, profiles, etc.)

If the auth.view_keys config option is enabled, any key will grant access to view a content object. That would allow you
to grant specific users or groups permission to view admin-only content, for instance.

Configurations
Configuration files work similarly to v3, with some enhancements:

You can setup an array with only a single element using

	 conf.setting += foo

(In v3, this appends to a setting; in v4 it initializes an array if the setting is undefined.)

Module config files normally set config settings in the module namespace (eg. foo=1 in Blog.conf actually sets
Blog.foo=1). You can access the global namespace in Module config files using "-", for example:

	 -.content.metadata.profile.organization.datatype = string

Settings
Settings are configuration parameters that can be set either globally, on a content type, or on a specific content object.
They can be set in configuration files, or in preferences. For example, blogs have a configurable parameter, index_min,
which defines the minimum number of articles that will be shown in a blog index.

To set this globally:

	 setting.blog.index_min = 3

v3 v4
editor, designer, administrator editor, designer, administrator, reviewer, owner

ExSite v4 Developer Guide	 "5

Exware Solutions Inc.

To set it on a specific blog:

	 setting.blog:BLOG_ID.index_min = 1 # numeric
or
	 setting.blog:News.index_min = 1 # by name

You can also put settings into preferences. Use the first form (in this case, setting.blog.index_min), and attach to the
preference to either:

• the content object (the blog) itself

• the reference object (for instance, an article setting could be put on the blog)

• the section object

Important/Useful New Configuration Settings
server.fileroot = /var/www/files # where to install uploaded files
form.jquery_validation = 0 # jquery form validation enhancements (off by default; turn on if your site uses jquery)
report.compact_columns = 10 # switch to compact CSS if there are at least this many columns
report.permission_denied = (no permission to view this data) # customize column access denied msg
search.skip.library = 1 # skip indexing of certain content types
content.viewdim.normal = 512 # optimal sizes of images
content.posting_date_format = date # how to display posting dates
content.metadata.page.keywords.datatype = string # set metadata and its dbmap characteristics*
content.contextual_metadata = 0 # allow content objects to inherit metadata definitions from parent objects
content.flags.form += captcha # define a flag (boolean metadata)*
content.format.article = ... # format string for presenting articles*
content.format.article_summary = ... # format string for presenting article summaries in indexes*
content.format.blog_article_summary = ... # format string for presenting article summaries in blog indexes*
content.blog.stickiness = temporary # special config settings for content types*
spacechar = _ # what to substitute for spaces in URLs
queue.start = 10 # when to start pulling things off the queue
queue.end = 16 # when to stop pulling things off the queue
queue.perday = 2 # how many queued items to publish each day

* The setting shown is particular to one content type, but the general format of the setting can be used for any content
type.

Forms
Forms can implement Bootstrap tooltips, by including a tooltip parameter to the input methods. DBmap help attributes
will be automatically used to make form tooltips on auto-generated forms.

In FormBuilder, you can override the layout of particular questions using qtemplate(). For example, to display a checkbox
before the prompt for the waiver question, you could do this:

	 $form->qtemplate("waiver","<p>[[input]] [[prompt]]</p>");

ExSite v4 Developer Guide	 "6

Exware Solutions Inc.

This lets you avoid templating the whole form when you just want to treat one question differently.

Turn on jquery form validation to get better CSS highlighting of your missing form data:

	 form.jquery_validation = 1

If you submit with missing data, those fields will be highlighted.

Reports
If the number of columns exceeds a configurable value (10 by default), reports automatically switch to more compact
CSS.

Reports can be saved and reloaded later by a different process:

	 $report->save("unique key",$optional_number_of_days);

Later, you can re-load the report using:

	 $report->load("unique key");

and display, export, or modify it. (You need to re-save if you want your modifications preserved.)

Saved reports can be made available to the Database Query module; simply list the report keys you want to be able to
view in Query.conf, like so:

	 saved_reports = Report #1
	 saved_reports += Report #2
	 ... etc

Saved reports are a simple way of quickly viewing reports that are slow and costly to generate. For example, build the
reports once on an overnight job, and then used the saved report for quickly viewing the results with no wait.

Filtered Reports
You can preload a volume of raw data into a report, and then generate numerous reports by applying filters and rules to
the raw data.

Raw data is one datahash per row, ie. a set of key => value pairs, using the same keys in each row. Preload your data
using:

	 $report->rawhead(%head);	 	 # key => header name
	 $report->rawdata(@data);	 	 # each array element is a row/datahash
	 $report->rawpush(@data);	 	 # add more rows

Then generate a report using:

	 $report->select(%opt);

To select rows, use any of the following comparator options:

• match => match hash, matching rows will be selected for display

ExSite v4 Developer Guide	 "7

Exware Solutions Inc.

• notmatch => like match, but matches are excluded

• like => like match, but ignores case, charset, and whitespace

• notlike => like like, but matches are excluded

• contains => match hash, rows containing the substrings will be selected

• notcontains => like contains, but matches are excluded

• gt => match hash, rows greater than the values will be selected

• lt => { match hash, rows less than the values will be selected }

• empty => [array of keys, rows in which the key is empty will be selected]

• notempty => [array of keys, rows in which the key is not empty will be selected]

If you specify no conditions, rows will be automatically selected for display.

To apply logical operators to your conditions, use these options:

• method => and|or - use this method to join multiple conditions in one call

• or = select rows where any condition matches

• and = select rows where all conditions match [default]

• reselect => and|or - use this method to combine results with the results from a previous pass

• or = add matches to the previous results

• and = remove non-matches from the previous results

To select which columns to display in the final report:

	 columns => [array of keys to include in the output]

Then you can call make, export, or save, as usual.

You can include any number of conditions in the options, for example:

	 # select rows where a<5 and b>10 and c==15

	 $report->select(lt=>{a=>5},gt=>{b=>10},match=>{c=>15});

By default, the conditions are combined with a logical AND, ie. all conditions must match for a row to be selected. Set
method=>"or" to combine with a logical OR instead, ie. ANY condition may match for a row to be selected.

Use reselect=>and|or to perform multiple passes on the data in a similar way. This lets you create more complicated
logical tests, for example:

	 # select rows where (a<5 || b<10) && (c==3 || d==6)
	 # first, select rows where a<5 OR b<10

ExSite v4 Developer Guide	 "8

Exware Solutions Inc.

	 $report->select(lt=>{a=>5,b=>10},method=>"or");
	 # of the selected rows, select rows where c==3 or d==6
	 $report->select(match=>{c=>3,d=>6},method=>"or",reselect=>"and");

	 # select rows where (a<5 && b<10) || (c==3 && d==6)
	 # first, select rows where a<5 and b<10
	 $report->select(lt=>{a=>5,b=>10}); # method=>"and" assumed by default
	 # also include rows where c==3 and d==6
	 $report->select(match=>{c=>3,d=>6},reselect=>"or");

User Interface
The administrator back-end is at:

/cgi/ex.cgi/admin
/cgi/ex.cgi/admin/<Module>

The base panel of the admin interface is a launcher menu that lets you launch other panels and interfaces, as needed. It
includes all of your plugins, organized into categories. The Overview category includes general views of your whole
system or site, including:

• alternative launcher panels, such as the v3 webtop, special Dashboards

• links to your website front-ends

• help

Control Panels
If your plug-in partitions its material by section, you can start with a section selector, as in v3. For CMS tools, it may be
friendlier (fewer clicks) to just show all of the available child objects with their section identified. For example, a calendar
tool could just show all of the available calendars in all sections the admin has access to, rather than asking them to
select a section first.

2-pane control panels (as used in the old Document plug-in, for instance) are no longer supported.

UI Class
The ExSite::UI class replaces v3's ExSite::HTML class. It has a lot of the same sorts of widgets, but they are called in an
OOP manner, eg.

	 $out .= &ExSiite::HTML::BasicBox(%options); # v3

	 $out .= $ui->BasicBox(%options); #v4

Although similar, many of the widgets have been replaced with Bootstrap equivalents. There are a few new widgets in v4:

widget description
navitem generic clickable element
dispitem generic display element
ErrorMsg displays an error message

ExSite v4 Developer Guide	 "9

Exware Solutions Inc.

The calling conventions of these widgets have been normalized and made consistent across all calls. There are some
standard parameters that can be passed to many of these widgets:

Note that buttons and tools, which accept an url parameter to link to something, can also accept a links parameter,
which is a list of things to link to. This will generate a pop-up menu when clicked.

The OverlayFrame widget is particularly useful when you switch contexts, such as:

• jumping to a different plug-in module

• showing a preview of a front-end page or item

• when your main screen is slow to generate, and you don't want to lose it as the user works through sub-views

• anywhere you might consider using a popup window

To make use of the OverlayFrame, simply insert it into your page:

	 $out .= $ui->OverlayFrame();

To make a link open in the OverlayFrame, use this method:

	 my $link = $ui->OLFrameLink($url);
	 $out .= $ml->a("open in OverlayFrame",{href=>$link});

SuccessMsg displays a confirmation message
HelpMsg displays help information
SuccessBox same as SuccessMsg, but with a title and frame
HelpBox same as HelpMsg, but with a title and frame
AlertBox a floating dialog, that can be dismissed
Figure a graphic with a caption
TreeView replaces old DynList
OverlayFrame an iframe that floats over the main screen
TitleBar an application titlebar with optional links
Menu a vertically-stacked menu of links
Spinner a please-wait spinner
FATool a small icon tool button, using Font Awesome

widget description

parameter description
tone good, bad, warning, important, neutral - sets the general styling of the widget
size l, m, s - sets the size of the widget
ucicon name of a unicode icon to use
faicon name of a Font Awesome icon to use
icon url of an image to use as an icon
confirm pops up a confirmation dialog with this message when clicked

ExSite v4 Developer Guide	 "10

Exware Solutions Inc.

ML
The markup class has been updated to support HTML5. Set the HTML level it should presume using

	 markup.html_level = 5 # 4 or 5; 5 is the default

It now AUTOLOADs implicit methods for all tags, so you can call

	 $ml->foo(...) # or _foo or __foo

and it will generate markup like

	 <foo>...</foo>

ML objects also support smart headings, which allows you to generate well-structured and context-appropriate
headings, even in cases where you don't know the current heading level.

	 $ml->hlevel(n); # set the heading level without generating a heading
	 $ml->h1($heading); # output a heading at level 1, and set that heading level (ditto for h2 ... h6)
	 $ml->h($heading); # generating a heading at the current heading level
	 $ml->_h($heading); # append a heading at the current heading level
	 $ml->hup($heading); # go up/back one heading level (eg. h3 to h2) and generate a heading
	 $ml->hdown($heading); # go down one heading level (eg. h2 to h3) and generate a heading

Page and Output Handling
General CMS features are covered in the ExSite 4 Content Model document, but there are a few points of interest to
developers, that are worth covering here.

Publishing
V4 prefers static content views, where possible. The system supports hourly, daily, and weekly publish rules, in addition
to static and dynamic. These can help to keep your static content refreshed automatically even when it changes
unpredictably (for example, upcoming events, new posts, member directories).

Personalized pages are harder to render as static views. If the personalizations are small, you can sometimes move the
dynamic elements into Javascript (the Login plugin does this, for instance).

V4 allows for intelligent determination of whether a content object should be static or dynamic. If the publish field is not
set, the system will call the object's publish_rule_heuristic() method to determine the most appropriate publish rule to
use. For example, the default heuristic is:

• dynamic if the content is access-controlled (eg. members-only)

• the most dynamic rule of the embedded plugins. Plugins can declare their own publish rules using the PublishRule ioctl.
For example, SimpleMenu has a static PublishRule, because its output is always the same on any given page.

• default is static

For example, event views can change day-to-day, as registrations open and close. In v3, that meant that they had to be
dynamic, but they would continue to be dynamic even after events were over. In v4, events will automatically assume
their publish rule is "daily" before the event if there is registration, and "static" after the event. That means you get best

ExSite v4 Developer Guide	 "11

Exware Solutions Inc.

results by not setting any publish rule at all, which allows it to be flexible enough to change the rule depending on the
date.

If only a specific content object on the page needs to be dynamic or access-controlled, you can set the access or
publish rule on that content only. The main page will be static, and the dynamic content will be fetched with javascript. If
the object is an image, and access is denied, it will be replaced with an access denied image.

Note that if your page is completely dynamic, it will still generate a static file containing a meta-redirect to the dynamic
view. That means static URLs should always work for simple GET requests.

Publishing will be invoked automatically by certain workflow operations (like "publish", obviously). In some cases, those
workflow operations can be initiated by unprivileged users. For example, if comments are accepted without moderation,
then threads and/or forum indexes will republish automatically when they are submitted. You must pass an approve=>1
flag to the publish() call to approve such operations.

CMS tags
You do not necessarily have to do your own URL generation when linking to content.

You can request a specific view when you link to content using [[content]] tags to get the URL. For instance, say you
have a content object called image, then you can link to the normal default view using [[image]]. But if you have a high-
res version on file, you can link to that instead, using [[image:large]].

You can also force dynamic views and even select specific revisions, using tags like [[image?revision=REV]] where REV is
a revision name (newest, draft, etc) or number.

Similarly, {{page?query_string}} will substitute a dynamic link to the page, with the appropriate query string settings. If you
just use {{?query_string}}, the page will link to itself. {{}} will link to itself with no query string setting, but will use a static
URL, while {{!}} will always link to a dynamic URL. {{&Module}} will link to the service page for a module, so you can link
to the shopping cart using {{&Pay}}, for instance.

Metadata
The metadata insertion tags <!--$special--> have a few new options:

<!--$page_header--> and <!--$page_footer--> are used for appending to the <head> section of the document, as well as
to the end of the document. If your plug-in has some additions that belong properly in the <head> section (for example,
<style> blocks, or metadata), then do this:

	 $share{page_header} .= $head_out;

Similarly, if your plug-in has some additional that are better put at the end of the document (for example, javascript code
that should load after other content has loaded), then do this:

	 $share{page_footer} .= $foot_out;

Those %share variables will automatically be substituted in where the <!--$page_header--> and <!--$page_footer--> tags
are inserted. If you didn't include your own page_footer tag, it will append to the end of the HTML document.

Note that ExSite automatically puts stuff into these variables. For example, optional javascript will get added to
page_footer so that it runs after the page is loaded. For this reason, always append to these %share variables so you
don't wipe out any existing settings.

ExSite v4 Developer Guide	 "12

Exware Solutions Inc.

The <!--$metadata--> tag will be replaced with a full set of <meta> tags, depending on which ones have been
preconfigured to display automatically. To include meta tags automatically, use a setting like

	 content.metadata.page.description.show = 1 # ExSite content-specific metadata

	 content.metadata._.twitter:card.show =1 # generic metadata

All such meta tags with a show setting will be included, if they have valid explicit or implicit content.

Javascript
To include standard Javascript in your output (on pages or control panels), use:

	 $out .= &insert_js($script1, $script2, $script3, ...);

so that we can avoid inserting javascript that has already been included somewhere else. $script can be:

• a standard library name, like jquery, jqueryui, or bootstrap

• a standard Bootstrap initialization snippet, such as tooltip, popover, or dropdown

• a standard ExSite js file in /_ExSite/js, such as misc or httprequest

• the path to any other javascript file

• raw javascript code

If you are are including any standard javascript in your front-end website templates, you can mark them as included using
config settings like

	 content.js.bootstrap = 1

Then any attempt by a plugin to include bootstrap will do nothing, since it knows it was already loaded by the template.

CSS
You can track what CSS files have been inserted in a similar way:

	 $out .= &insert_css($css);

or, to put the style links/blocks in the document head where they belong:

	 $share{page_header} .= &insert_css($css);

$css can be:

• a standard ExSite CSS file in /_ExSite/css, such as Report.css (the suffix is optional)

• any full path to a CSS file

• raw CSS code

AJAX
The dispatcher is a new v4 feature that tries to gang together multiuple AJAX calls into a single AJAX call, for more
efficient AJAX communications. You do not need to do anything to enable this feature, except set

ExSite v4 Developer Guide	 "13

Exware Solutions Inc.

	 content.ajax_method = dispatch

which should be the default.

The dispatcher replaces all module AJAX calls, such as those invoked using single and double-AJAX notation like 	

	 <!--&&Module()-->

with a single call to dispatch(). This performs all of the AJAX calls in a single http request, and returns the results in a
JSON structure. This structure is parsed, and the various outputs are dispatched back to their appropriate page
elements. That means that a page should only ever generate one AJAX hit on the server, no matter how many AJAX
modules are invoked on the page. (However, AJAX posts will be dispatched separately.)

Frameworks

E-Commerce Services
E-commerce and Financial reports work similarly to v3. Some significant new features have been added, however.

Shopping Cart
There is a new Cart class in the Finance framework that handles the shopping cart functionality. It inherits from the
Receivable class. If you use the Pay module to generate your shopping cart views, you will not need to interact with the
Cart directly. But if you need more control over the shopping cart experience, you can use the Cart class as a shopping
cart API as follows:

Obtain a shopping cart object:

	 my $cart = new Modules::Finance::Cart(); # automatically connects to the current shopping cart

Display the cart:

	 $out .= $cart->show(%options); # interactive, eg. delete from cart, change quantity, checkout
	 $out .= $cart->show_readonly(%options); # only shows the cart, no interactivity

Add an item to the cart:

	 $cart->add(%item); # %item describes a receivable_item

Receivable Items can now be related to each other through a parent column; this allows for multiple purchases in the cart
to be related to each other as co-purchases. Removing the parent purchase will, for example, also remove the co-
purchase.

Note that deleting items from the cart does not actually delete the receivable_item records any more; it merely changes
the record status to deleted. Remember this when looping over the items in an invoice; use $item->is_active to
determine whether the item is active (not deleted). Similarly, items can also have a status of “hidden” (do not display in
end-user views) and “readonly” (do not permit the end-user to alter or delete the item).

When calling $invoice->show(%opt), use the options deleted=>1 or hidden=>1 to included deleted or hidden items in
your views of the contents, as they will not be shown by default.

ExSite v4 Developer Guide	 "14

Exware Solutions Inc.

Callbacks to Purchased Objects
Individual line items can be related to database objects using the objtype and objid fields, as in v3. To obtain a purchased
object, simply use:

	 my $obj = $receivable_item->purchased_object();

There are 6 standard callbacks that will be used automatically, if they exist in the purchased object:

	 $obj->sale_select($item); # this is called when the object is added to the cart
	 $obj->sale_quantity($item,$old_q,$new_q); # this is called when the quantity of the object is changed
	 $obj->sale_delete($item); # this is called when the object is removed from the cart
	 $obj->sale_activate($item); # this is called when the sale is closed and the invoice is activated
	 $obj->sale_complete($tem); # this is called when the sale is completed and paid in full
	 $obj->sale_note($item); # this is used to append purchase notes/messages to invoices and receipts

In each case, the receivable item object is passed to the callback.

Purchase Locations
Purchased objects can define their own location for the purpose of calculating taxes and other surcharges. When the
object is added to the cart, you can pass country and provstate values that will be used for this purpose. This information
is saved in the receivable_item record, so no handlers or special callbacks are needed.

If no location information is included in the purchased object, the purchaser location will be used instead.

GL Codes
Itemized financial reports can include GL codes for each item. GL codes have 2 forms, internal and external. Internal GL
codes have the format “AXX.YYY.ZZZ”:

A = 1 for sales, 2 for payments received, 3 for refunds, and 4 for payments issued
XX = the type (sales type/accounting code for sales, payment method for payments)
YYY = a purchase category identifier (eg. an event, or catalog ID)
ZZZ = a purchase subcategory identifier (eg. a fee, or product ID)

To set these GL code values, set the following fields in the receivable_item table, or in the parameters to $cart->add(...):

	 XX: acctcode_id
	 YYY: acctcode2
	 ZZZ: acctcode3
For example, the internal GL code 102.556.562 is a sale (1xx) of Account Code 2 (event registrations, say), relating to
event 556 and fee 562.

This GL code structure allows for some generalization, grouping, and categorization, for instance 102.* is all event-
registration sales, whereas 102.556.* is all sales for one particular event, and 102.556.562 is all sales for one fee. Sorting
by GL code will automatically group related sales together.

GL Code Mapping
Further grouping and categorization is possible with GL code mapping. Internal GL codes can be mapped to external GL
codes using the glcode table. This table defines simple rules for converting internal GL codes to external GL codes for

ExSite v4 Developer Guide	 "15

Exware Solutions Inc.

some other accounting system. A mapping rule consists of an internal GL code, which is compared to the GL code of an
actual item, and an external GL code that is used if the two match. Mapping rules can define one, two, or all three fields
of the internal GL code, for example:

	 102 - matches any internal GL code starting with 102

	 102.556 - matches any internal GL code starting with 102.556

	 102.556.563 - matches that GL code exactly.

Example mapping rule: If event 556 is a conference with multiple different fees, but you want all conference fees to be
grouped by the same external GL code, the following map rule will use “CONF2016” as the GL code for all registrations
in all fees for that event.

	 102.556 --> CONF2016

If there are multiple mapping rules that all match, it will choose the most specific one that matches.

You can also use GL code maps to equivalence different items. For example, if you run two sessions of a course, they
will end up with different internal GL codes because they are different events. If one is event 600 and the other is event
601, you can equivalence them with a simple mapping rule like:

	 102.601 --> 102.600

or, alternatively

	 102.600 --> COURSE101
	 102.601 --> COURSE101

Payment GL codes
Payments also use GL codes in the format "AXX.YYY.ZZZ". A is 2 for revenues, and 4 for refunds. XX is set based on the
payment method. YYY is the account ID that the payment was made against, and ZZZ is the invoice that was being paid,
if that information is available.

Note that payments also have a new ident field which contains a payment identifier. This is meant to be used for
including an identification value such as last 4 digits of credit card, or cheque number. Keeping this in a separate field
makes it more easily reported and searchable than putting it into the notes field.

Address Book
There are significant differences in the structure of address cards in v4. The contact record itself contains no contact
information; the content information is in the attribute-like contact_info records. That makes it more extensible, and more
flexible for security (access can be granted field-by-field rather than for whole cards.

The individual contact_info fields each have their own privacy settings (numeric, equivalent to access level), which
supersede the privacy setting of the contact record itself.

However, it will complicate contact queries, especially on multiple fields. To get multiple contact fields as separate rows,
do something like this:

	 select c.contact_id,c.name,i.name,i.value from contact c, contact_info i where i.contact_id=c.contact id and ...

ExSite v4 Developer Guide	 "16

Exware Solutions Inc.

To get multiple contact fields on a single row, do something like this:

	 select c.contact_id,c.name,phone.value,email.value
	 from contact c
	 left join contact_info email on email.contact_id=c.contact_id
	 left join contact_info phone on phone.contact_id=c.contact id
	 where email.name="email" and phone.name="phone" and ...

To quickly get the contact fields for a particular contact record, use:

	 my %contact_info = $contact->get_info();

The v3 phone1 and phone2 fields have been replaced with phone and cell fields.

Address cards auto-validate their provstate settings, based on which country was selected.

Contact records can be attached to accounts or to contact records. The latter is used for things like:

• location addresses

• profile/directory addresses

Forms
The v3 QA framework is replaced by v4's Forms framework. Forms and questions are now content objects, which
means:

• they use standard access controls and translation tools

• the revisions are treated as templates. Revisions of a form are the layout/template for the form, while revisions of a
question are used as a layout/template for that one question.

New features that are made possible by this approach:

• layouts are contained in the form, not in libraries

• no question libraries; just re-use questions by copying them from old forms

• smarter question layouts (eg. checkboxes first)

Other new features that have also been added:

• HTML input types

• drag-and-drop question ordering

• context-sensitive question setup and configuration

Note that, as content objects, forms do not utilize service pages any more. However, forms effectively serve as their own
service page. To embed a form into a page, place the form content object under that page, and embed it into the page
content using <!--content(form_name)-->. Submitting that form effectively directs you to /cgi/ex.cgi/page_name/
form_name, which allows you to customize the layout of the form response.

ExSite v4 Developer Guide	 "17

Exware Solutions Inc.

As a developer, the primary change to consider is that forms are not remote objects that are referenced through a
qa_form_id, but are content objects that can be embedded right in the object you are working on. For example a
registration fee can contain its own form as sub-content. Or a membership type can contain a sign-up or renewal form
(or both) as sub-content. To check for the existence of such a form, do this:

	 $registration_form = $fee->my_content("registration_form");

$registration_form will now be the form object itself, if one exists.

Plugin Development
V4 plugins are structured the same as v3, with read() write(), and ioctl() methods. The same ioctl commands are
recognized, and you can follow the same general methodology as in v3.

If your plugin is built on the v4 CMS framework (eg. it manages a new content type), then it can inherit from
Modules::Content to get a full suite of CMS admin functions, including:

• pathbar() to display your current position in the site

• configure() to set the content record fields and specific metadata attributes

• update() to add a new revision, and rollback() to discard the latest revision

• delete() to remove the content and its descendants

• copy() to make a copy of the content

• search() to find content within an object (eg. find an event in a calendar)

• pricing() to manage the prices of an item

• order() to change the sorting of the items under the content

• todo() to add a to-do item on this content

• translations() to manage the translations of this content

• images() to manage the images under this content

• contacts() to manage the contact records for this content

• about() to display all of the relevant information about this content

• tags() to manage all of the keyword tags on the content

• metadata() to manage the specific and generic metadata for the content

• schedule() to manage the scheduled tasks for the content

• wf_tools() to display appropriate workflow actions in a toolbar or menu, and schedule_tool() to include a schedule
button

• publish(), unpublish(), archive(), approve(), submit(), queue(), unqueue(), draft(), expire(), cancel(), and reject()
methods to perform those workflow operations

ExSite v4 Developer Guide	 "18

Exware Solutions Inc.

You simply need to decide which ones to expose to the admin in your toolbar menu, and your command switch
statement. These methods all accept a content object as a parameter, so they can be used to manage any content
object, including ones from other content classes that are not explicitly handled by your plugin.

In cases where your content makes use of other content objects (like images, email templates, or forms), those
secondary content objects should simply be embedded under their parent objects, and managed using the same tools
as above. Do not place them in libraries unless it is your intent to share them between multiple content objects.

Plugin Best Practices
• inherit from the Modules::Content class to get standardized UI and methods for managing content objects

• use the global ML object to keep heading and other context

$ml = &get_obj("ML");

• do not duplicate underlying CMS features if possible

• use static or interval publishing, where possible

• use wf_tools() to suggest reasonable workflow operations

• avoid using a section selector if the next step just makes you select from a small number of content objects; select
those objects on the first screen, and show all sections at once

• use $ui->OverlayFrame() when cross-linking to other plugins, live website views, or other operations that would
normally use a popup to avoid losing your control panel

• control panels should display, in order, and where appropriate: pathbar, toolbar, status messages, work area/preview

• when linking to another plugin or inclined to use a popup, try an OverlayFrame

• use the bad tone for destructive actions, such as delete buttons.

• if your toolbars are too busy, group and hide the less-used functions in drop-down menus.

• wrap previews in a BasicBox or something similar

Should you rebuild your plug-in using the V4 CMS framework?
Your plug-in can probably be converted to v4 with some simple changes:

• if you are calling into any CMS objects (like Section, Page), those calls may need to be updated

• direct references to a section_id in the data may need to be replaced with content_id

• update the control panel UI calls

Otherwise, it should just work. But you should consider a rewrite using the V4 CMS framework if your module has any of
the following features:

• hierarchical data structures

• translations

ExSite v4 Developer Guide	 "19

Exware Solutions Inc.

• HTML editing (TinyMCE)

• workflow, moderation, approvals

• uploaded images or files

• scheduled tasks

• search

• prices, e-commerce

• access controls

• metadata or other settings

• forms

• templates

• contact records

Sharing those common frameworks means less coding, less debugging, more UI consistency, and it's easier to extend
your tools to include additional features on this list.

ExSite v4 Developer Guide	 "20

	Introduction
	CGI Programs
	Database Changes
	DB Maps
	Attributes & Metadata
	Object Handling
	Security
	Groups
	Keys
	Security Roles
	Configurations
	Settings
	Important/Useful New Configuration Settings
	Forms
	Reports
	Filtered Reports
	User Interface
	Control Panels
	UI Class
	ML
	Page and Output Handling
	Publishing
	CMS tags
	Metadata
	Javascript
	CSS
	AJAX
	Frameworks
	E-Commerce Services
	Shopping Cart
	Callbacks to Purchased Objects
	Purchase Locations
	GL Codes
	GL Code Mapping
	Payment GL codes
	Address Book
	Forms
	Plugin Development
	Plugin Best Practices
	Should you rebuild your plug-in using the V4 CMS framework?

